vit-weldclassify

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0639
  • Accuracy: 0.8174

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 18
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.8311 0.8130 100 0.9623 0.4886
0.6016 1.6260 200 0.5911 0.7215
0.2602 2.4390 300 1.0585 0.6393
0.1643 3.2520 400 0.9470 0.7169
0.3754 4.0650 500 0.6054 0.8082
0.1446 4.8780 600 0.6845 0.7854
0.138 5.6911 700 0.9011 0.7534
0.033 6.5041 800 0.8366 0.8128
0.0538 7.3171 900 0.9102 0.7854
0.0144 8.1301 1000 0.8510 0.8128
0.0459 8.9431 1100 0.8610 0.8219
0.0022 9.7561 1200 0.9398 0.8082
0.0019 10.5691 1300 0.8714 0.8356
0.0015 11.3821 1400 1.0001 0.8128
0.0013 12.1951 1500 0.9926 0.8219
0.0012 13.0081 1600 1.0175 0.8219
0.0011 13.8211 1700 1.0323 0.8219
0.001 14.6341 1800 1.0453 0.8174
0.0009 15.4472 1900 1.0518 0.8174
0.0009 16.2602 2000 1.0585 0.8174
0.0009 17.0732 2100 1.0623 0.8174
0.0009 17.8862 2200 1.0639 0.8174

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
193
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for th041/vit-weldclassify

Finetuned
(1866)
this model

Evaluation results