vit-weldclassify
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.0639
- Accuracy: 0.8174
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 18
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.8311 | 0.8130 | 100 | 0.9623 | 0.4886 |
0.6016 | 1.6260 | 200 | 0.5911 | 0.7215 |
0.2602 | 2.4390 | 300 | 1.0585 | 0.6393 |
0.1643 | 3.2520 | 400 | 0.9470 | 0.7169 |
0.3754 | 4.0650 | 500 | 0.6054 | 0.8082 |
0.1446 | 4.8780 | 600 | 0.6845 | 0.7854 |
0.138 | 5.6911 | 700 | 0.9011 | 0.7534 |
0.033 | 6.5041 | 800 | 0.8366 | 0.8128 |
0.0538 | 7.3171 | 900 | 0.9102 | 0.7854 |
0.0144 | 8.1301 | 1000 | 0.8510 | 0.8128 |
0.0459 | 8.9431 | 1100 | 0.8610 | 0.8219 |
0.0022 | 9.7561 | 1200 | 0.9398 | 0.8082 |
0.0019 | 10.5691 | 1300 | 0.8714 | 0.8356 |
0.0015 | 11.3821 | 1400 | 1.0001 | 0.8128 |
0.0013 | 12.1951 | 1500 | 0.9926 | 0.8219 |
0.0012 | 13.0081 | 1600 | 1.0175 | 0.8219 |
0.0011 | 13.8211 | 1700 | 1.0323 | 0.8219 |
0.001 | 14.6341 | 1800 | 1.0453 | 0.8174 |
0.0009 | 15.4472 | 1900 | 1.0518 | 0.8174 |
0.0009 | 16.2602 | 2000 | 1.0585 | 0.8174 |
0.0009 | 17.0732 | 2100 | 1.0623 | 0.8174 |
0.0009 | 17.8862 | 2200 | 1.0639 | 0.8174 |
Framework versions
- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 193
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for th041/vit-weldclassify
Base model
google/vit-base-patch16-224-in21k