vit-weldclassifyv2
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.4613
- Accuracy: 0.8633
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 13
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.035 | 0.6410 | 100 | 1.1332 | 0.4029 |
0.6893 | 1.2821 | 200 | 0.7341 | 0.6655 |
0.5618 | 1.9231 | 300 | 0.5596 | 0.7554 |
0.4344 | 2.5641 | 400 | 0.5951 | 0.7770 |
0.1591 | 3.2051 | 500 | 0.4667 | 0.8453 |
0.1821 | 3.8462 | 600 | 0.5082 | 0.8345 |
0.0811 | 4.4872 | 700 | 0.4613 | 0.8633 |
0.1729 | 5.1282 | 800 | 0.6382 | 0.7986 |
0.1174 | 5.7692 | 900 | 0.4974 | 0.8669 |
0.0389 | 6.4103 | 1000 | 0.6049 | 0.8453 |
0.0099 | 7.0513 | 1100 | 0.6147 | 0.8561 |
0.0342 | 7.6923 | 1200 | 0.5603 | 0.8741 |
0.0175 | 8.3333 | 1300 | 0.5679 | 0.8849 |
0.0177 | 8.9744 | 1400 | 0.6592 | 0.8669 |
0.0025 | 9.6154 | 1500 | 0.6000 | 0.8669 |
0.0021 | 10.2564 | 1600 | 0.6060 | 0.8597 |
0.002 | 10.8974 | 1700 | 0.6113 | 0.8597 |
0.0019 | 11.5385 | 1800 | 0.6178 | 0.8561 |
0.0019 | 12.1795 | 1900 | 0.6214 | 0.8561 |
0.002 | 12.8205 | 2000 | 0.6228 | 0.8561 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 6
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for th041/vit-weldclassifyv2
Base model
google/vit-base-patch16-224-in21k