theone049's picture
Update README.md
7820d54 verified
---
language:
- en
tags:
- agriculture
- question-answering
- fine-tuning
- lora
- domain-specific
license: apache-2.0
datasets:
- agriqa
model-index:
- name: TinyLlama-LoRA-AgriQA
results:
- task:
type: question-answering
name: Question Answering
dataset:
name: AgriQA
type: agriqa
metrics:
- type: accuracy
value: 0.78
name: Accuracy
---
# 馃 AgriQA TinyLlama LoRA Adapter
This repository contains a [LoRA](https://arxiv.org/abs/2106.09685) adapter fine-tuned on the [AgriQA](https://huggingface.co/datasets/shchoi83/agriQA) dataset using the [TinyLlama/TinyLlama-1.1B-Chat](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat) base model.
---
## 馃敡 Model Details
- **Base Model**: [`TinyLlama/TinyLlama-1.1B-Chat`](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat)
- **Adapter Type**: LoRA (Low-Rank Adaptation)
- **Adapter Size**: ~4.5MB
- **Dataset**: [`shchoi83/agriQA`](https://huggingface.co/datasets/shchoi83/agriQA)
- **Language**: English
- **Task**: Instruction-tuned Question Answering in Agriculture domain
- **Trained by**: [@theone049](https://huggingface.co/theone049)
---
## 馃搶 Usage
To use this adapter, load it on top of the base model:
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel, PeftConfig
# Load base model
base_model = AutoModelForCausalLM.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat")
tokenizer = AutoTokenizer.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat")
# Load adapter
model = PeftModel.from_pretrained(base_model, "theone049/agriqa-tinyllama-lora-adapter")
# Run inference
prompt = """### Instruction:
Answer the agricultural question.
### Input:
What is the ideal pH range for growing rice?
### Response:"""
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))