thescripterr's picture
Training complete
6d35100 verified
metadata
library_name: transformers
license: apache-2.0
base_model: bert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: bert-finetuned-ner-requirements
    results: []

bert-finetuned-ner-requirements

This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9697
  • Precision: 0.2404
  • Recall: 0.3788
  • F1: 0.2941
  • Accuracy: 0.75

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 10 1.5976 0.0 0.0 0.0 0.7226
No log 2.0 20 1.2824 0.1364 0.1364 0.1364 0.7555
No log 3.0 30 1.1017 0.1829 0.2273 0.2027 0.7464
No log 4.0 40 1.0788 0.1321 0.2121 0.1628 0.7464
No log 5.0 50 1.0091 0.1651 0.2727 0.2057 0.7482
No log 6.0 60 0.9949 0.1667 0.2879 0.2111 0.7427
No log 7.0 70 0.9766 0.2 0.3182 0.2456 0.7536
No log 8.0 80 0.9734 0.2202 0.3636 0.2743 0.7482
No log 9.0 90 0.9744 0.2336 0.3788 0.2890 0.75
No log 10.0 100 0.9697 0.2404 0.3788 0.2941 0.75

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.19.1