|
--- |
|
license: apache-2.0 |
|
base_model: ntu-spml/distilhubert |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- thisisjibon/banglabeats |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: distilhubert-finetuned-banglabeats |
|
results: |
|
- task: |
|
name: Audio Classification |
|
type: audio-classification |
|
dataset: |
|
name: BanglaBeats |
|
type: thisisjibon/banglabeats |
|
config: all |
|
split: train |
|
args: all |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.8336425479282622 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# distilhubert-finetuned-banglabeats |
|
|
|
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the BanglaBeats dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.4126 |
|
- Accuracy: 0.8336 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 6e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:| |
|
| 0.9439 | 1.0 | 910 | 0.9274 | 0.6425 | |
|
| 0.854 | 2.0 | 1820 | 0.7498 | 0.7260 | |
|
| 0.4835 | 3.0 | 2730 | 0.6329 | 0.7706 | |
|
| 0.6226 | 4.0 | 3640 | 0.6159 | 0.7934 | |
|
| 0.456 | 5.0 | 4550 | 0.7118 | 0.7972 | |
|
| 0.0565 | 6.0 | 5460 | 0.7994 | 0.8052 | |
|
| 0.2605 | 7.0 | 6370 | 0.9735 | 0.8151 | |
|
| 0.3635 | 8.0 | 7280 | 1.0618 | 0.8244 | |
|
| 0.1879 | 9.0 | 8190 | 1.1644 | 0.8213 | |
|
| 0.0292 | 10.0 | 9100 | 1.2543 | 0.8194 | |
|
| 0.0002 | 11.0 | 10010 | 1.4084 | 0.8101 | |
|
| 0.0006 | 12.0 | 10920 | 1.3823 | 0.8132 | |
|
| 0.088 | 13.0 | 11830 | 1.4016 | 0.8256 | |
|
| 0.0381 | 14.0 | 12740 | 1.3587 | 0.8225 | |
|
| 0.0 | 15.0 | 13650 | 1.4242 | 0.8169 | |
|
| 0.0 | 16.0 | 14560 | 1.4053 | 0.8275 | |
|
| 0.0183 | 17.0 | 15470 | 1.4357 | 0.8318 | |
|
| 0.0 | 18.0 | 16380 | 1.4123 | 0.8306 | |
|
| 0.0098 | 19.0 | 17290 | 1.4077 | 0.8330 | |
|
| 0.0 | 20.0 | 18200 | 1.4126 | 0.8336 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.0 |
|
- Pytorch 2.0.0 |
|
- Datasets 2.1.0 |
|
- Tokenizers 0.13.3 |
|
|