File size: 3,439 Bytes
ea8b722
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ce9fd3
ea8b722
 
 
 
 
 
 
 
 
5ce9fd3
 
ea8b722
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ce9fd3
ea8b722
 
 
 
 
5ce9fd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea8b722
 
 
 
5ce9fd3
ea8b722
5ce9fd3
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
---
license: apache-2.0
base_model: t5-large
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: t5-large_rte_sp0_ar0
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: glue
      type: glue
      config: rte
      split: validation
      args: rte
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.859375
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# t5-large_rte_sp0_ar0

This model is a fine-tuned version of [t5-large](https://huggingface.co/t5-large) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 3.5699
- Accuracy: 0.8594

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 32
- seed: 1
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 20
- training_steps: 750

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6946        | 0.27  | 25   | 0.6855          | 0.5271   |
| 0.6855        | 0.54  | 50   | 0.6477          | 0.6354   |
| 0.5931        | 0.82  | 75   | 0.4711          | 0.7942   |
| 0.4206        | 1.09  | 100  | 0.5129          | 0.8159   |
| 0.4076        | 1.36  | 125  | 0.4682          | 0.8375   |
| 0.2787        | 1.63  | 150  | 0.4392          | 0.8484   |
| 0.2772        | 1.9   | 175  | 0.4809          | 0.8520   |
| 0.2214        | 2.17  | 200  | 0.8655          | 0.8448   |
| 0.1505        | 2.45  | 225  | 0.9392          | 0.8628   |
| 0.1502        | 2.72  | 250  | 1.2747          | 0.8664   |
| 0.1149        | 2.99  | 275  | 3.4780          | 0.8448   |
| 0.1074        | 3.26  | 300  | 2.8125          | 0.8484   |
| 0.1359        | 3.53  | 325  | 3.0765          | 0.8448   |
| 0.0577        | 3.8   | 350  | 3.1358          | 0.8592   |
| 0.0212        | 4.08  | 375  | 3.3075          | 0.8520   |
| 0.0251        | 4.35  | 400  | 5.9088          | 0.8736   |
| 0.0532        | 4.62  | 425  | 5.5508          | 0.8700   |
| 0.0229        | 4.89  | 450  | 4.6194          | 0.8700   |
| 0.0517        | 5.16  | 475  | 3.2927          | 0.8592   |
| 0.0182        | 5.43  | 500  | 4.5065          | 0.8773   |
| 0.2538        | 5.71  | 525  | 4.5460          | 0.8809   |
| 0.0162        | 5.98  | 550  | 4.2678          | 0.8700   |
| 0.0221        | 6.25  | 575  | 4.6268          | 0.8664   |
| 0.007         | 6.52  | 600  | 4.3411          | 0.8664   |
| 0.0038        | 6.79  | 625  | 5.0136          | 0.8664   |
| 0.036         | 7.07  | 650  | 5.6308          | 0.8736   |
| 0.0064        | 7.34  | 675  | 5.9644          | 0.8736   |
| 0.0037        | 7.61  | 700  | 5.3223          | 0.8736   |
| 0.0121        | 7.88  | 725  | 5.3345          | 0.8736   |
| 0.0251        | 8.15  | 750  | 4.9899          | 0.8736   |


### Framework versions

- Transformers 4.34.1
- Pytorch 2.0.1+cu117
- Datasets 2.9.0
- Tokenizers 0.14.1