thusken's picture
End of training
7c8e91f verified
metadata
license: apache-2.0
base_model: ltg/norbert3-large
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: norbert3-large-user-needs-v2
    results: []

norbert3-large-user-needs-v2

This model is a fine-tuned version of ltg/norbert3-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 3.1392
  • Accuracy: 0.7067
  • F1: 0.6946
  • Precision: 0.6905
  • Recall: 0.7067

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 4
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
No log 1.0 375 0.8059 0.6747 0.6472 0.6569 0.6747
0.9129 2.0 750 0.9030 0.6453 0.6142 0.5975 0.6453
0.7636 3.0 1125 0.7755 0.6667 0.6292 0.6250 0.6667
0.6003 4.0 1500 1.0267 0.6773 0.6591 0.6928 0.6773
0.6003 5.0 1875 1.9897 0.6267 0.6378 0.6526 0.6267
0.2905 6.0 2250 2.0507 0.704 0.6913 0.6879 0.704
0.0901 7.0 2625 2.7638 0.6853 0.6590 0.6863 0.6853
0.0365 8.0 3000 2.6138 0.696 0.6875 0.6907 0.696
0.0365 9.0 3375 3.0024 0.6667 0.6585 0.6543 0.6667
0.0162 10.0 3750 2.9416 0.6933 0.6829 0.6798 0.6933
0.0022 11.0 4125 3.2015 0.6827 0.6558 0.6790 0.6827
0.0114 12.0 4500 3.3133 0.6933 0.6694 0.6916 0.6933
0.0114 13.0 4875 3.2376 0.6773 0.6695 0.6647 0.6773
0.0042 14.0 5250 3.1392 0.7067 0.6946 0.6905 0.7067
0.0035 15.0 5625 3.2710 0.6907 0.6770 0.6705 0.6907
0.0045 16.0 6000 3.3476 0.6933 0.6847 0.6841 0.6933
0.0045 17.0 6375 3.2386 0.696 0.6904 0.6932 0.696
0.0065 18.0 6750 3.4263 0.6853 0.6700 0.6607 0.6853
0.0029 19.0 7125 3.4898 0.6827 0.6652 0.6579 0.6827
0.0013 20.0 7500 3.5103 0.68 0.6624 0.6554 0.68

Framework versions

  • Transformers 4.36.0
  • Pytorch 2.1.0
  • Datasets 2.18.0
  • Tokenizers 0.15.2