File size: 15,583 Bytes
9ff738a
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space (Tuple)\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Uses the CombinedExtractor\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f76c4a6bf40>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f76c4a66d80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 100000, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684155395297691875, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAYbp5PjkYOL0usek+Ybp5PjkYOL0usek+Ybp5PjkYOL0usek+Ybp5PjkYOL0usek+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAvATWvjlkgj7ip9M/S+3dPutZyL8SUaQ/X4KfP3F4yL9Uux0/nGwnv7pV/jzFMYG+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABhunk+ORg4vS6x6T49R4g6irbYuyijdjxhunk+ORg4vS6x6T49R4g6irbYuyijdjxhunk+ORg4vS6x6T49R4g6irbYuyijdjxhunk+ORg4vS6x6T49R4g6irbYuyijdjyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.24387504 -0.04494498  0.4564299 ]\n [ 0.24387504 -0.04494498  0.4564299 ]\n [ 0.24387504 -0.04494498  0.4564299 ]\n [ 0.24387504 -0.04494498  0.4564299 ]]", "desired_goal": "[[-0.41800487  0.2546709   1.6535609 ]\n [ 0.43345103 -1.5652441   1.2837241 ]\n [ 1.2461661  -1.5661756   0.61613965]\n [-0.654001    0.03104674 -0.25233284]]", "observation": "[[ 0.24387504 -0.04494498  0.4564299   0.00103972 -0.00661356  0.01505355]\n [ 0.24387504 -0.04494498  0.4564299   0.00103972 -0.00661356  0.01505355]\n [ 0.24387504 -0.04494498  0.4564299   0.00103972 -0.00661356  0.01505355]\n [ 0.24387504 -0.04494498  0.4564299   0.00103972 -0.00661356  0.01505355]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAHKccPUEeq7xSmHc+w6GjPanxE71z3vI9o4SHvbOHzz2adJI+1agIPjndjjwy/6k9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]]", "desired_goal": "[[ 0.03824531 -0.02088845  0.241792  ]\n [ 0.07989838 -0.03611914  0.11858835]\n [-0.06617095  0.10133304  0.28604585]\n [ 0.13345654  0.01743947  0.08300628]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIOZ1kq8vp9b+UhpRSlIwBbJRLMowBdJRHQHOykDuBtk51fZQoaAZoCWgPQwg8ZwsIrcf4v5SGlFKUaBVLMmgWR0BzrQlWwNb1dX2UKGgGaAloD0MIObTIdr7f+L+UhpRSlGgVSzJoFkdAc6gEC/47BHV9lChoBmgJaA9DCLeZCvFI/Pe/lIaUUpRoFUsyaBZHQHOi8xTKkmB1fZQoaAZoCWgPQwiPcjCbAEP8v5SGlFKUaBVLMmgWR0BzukkD6nBMdX2UKGgGaAloD0MIHTuoxHXM+r+UhpRSlGgVSzJoFkdAc7TB5HEuQXV9lChoBmgJaA9DCA37PbFOlfq/lIaUUpRoFUsyaBZHQHOvvMr3Cbd1fZQoaAZoCWgPQwj4qL9eYQH5v5SGlFKUaBVLMmgWR0Bzqqt7rs0IdX2UKGgGaAloD0MI9+eiIeOxAMCUhpRSlGgVSzJoFkdAc8JO801qFnV9lChoBmgJaA9DCOfFia92VPm/lIaUUpRoFUsyaBZHQHO8yMUAT7F1fZQoaAZoCWgPQwjLD1zlCcT9v5SGlFKUaBVLMmgWR0Bzt8LronrqdX2UKGgGaAloD0MIMnctIR90AMCUhpRSlGgVSzJoFkdAc7Kx+8XenHV9lChoBmgJaA9DCE9ZTdcTXfe/lIaUUpRoFUsyaBZHQHPKIw/PgNx1fZQoaAZoCWgPQwgZxXJLq+H5v5SGlFKUaBVLMmgWR0BzxJw6ySmqdX2UKGgGaAloD0MI/3ivWpmw/L+UhpRSlGgVSzJoFkdAc7+WT5ftyHV9lChoBmgJaA9DCH5v05/9KADAlIaUUpRoFUsyaBZHQHO6hYvFm4B1fZQoaAZoCWgPQwiVnX5QF+n3v5SGlFKUaBVLMmgWR0Bz0gqc3EQ5dX2UKGgGaAloD0MIvTeGAOAY+b+UhpRSlGgVSzJoFkdAc8yFL39JjHV9lChoBmgJaA9DCN17uOS40/i/lIaUUpRoFUsyaBZHQHPHfwRXfZV1fZQoaAZoCWgPQwh4uB0aFiP9v5SGlFKUaBVLMmgWR0BzwnB3zMA4dX2UKGgGaAloD0MIKLnDJjLz/L+UhpRSlGgVSzJoFkdAc9p7Sy+pO3V9lChoBmgJaA9DCNlcNc8R+fO/lIaUUpRoFUsyaBZHQHPU9Gd7OVx1fZQoaAZoCWgPQwhEherm4m8BwJSGlFKUaBVLMmgWR0Bzz/LA57w8dX2UKGgGaAloD0MIDFwea0aG+r+UhpRSlGgVSzJoFkdAc8rjynUDuHV9lChoBmgJaA9DCDvj++JSFfS/lIaUUpRoFUsyaBZHQHPiqNVBD5V1fZQoaAZoCWgPQwgwEtpyLsX2v5SGlFKUaBVLMmgWR0Bz3SIyj59FdX2UKGgGaAloD0MIfLq6Y7GNAsCUhpRSlGgVSzJoFkdAc9gcUM5OrXV9lChoBmgJaA9DCDp5kQn4tfq/lIaUUpRoFUsyaBZHQHPTC3CsOoZ1fZQoaAZoCWgPQwhHBU62gbv+v5SGlFKUaBVLMmgWR0Bz7KwwCbMHdX2UKGgGaAloD0MIk6zD0VV6+L+UhpRSlGgVSzJoFkdAc+cqzZ6D5HV9lChoBmgJaA9DCBqIZTOH5Pe/lIaUUpRoFUsyaBZHQHPiKx9oexR1fZQoaAZoCWgPQwhN9WT+0bf3v5SGlFKUaBVLMmgWR0Bz3SBFuvU0dX2UKGgGaAloD0MI0Jfe/ly097+UhpRSlGgVSzJoFkdAc/nrfLs8gnV9lChoBmgJaA9DCIfddwyPPfi/lIaUUpRoFUsyaBZHQHP0aiGnGbV1fZQoaAZoCWgPQwghBU8hV6r3v5SGlFKUaBVLMmgWR0Bz72sJY1YRdX2UKGgGaAloD0MIqTC2EOTg97+UhpRSlGgVSzJoFkdAc+pgIhQm/nV9lChoBmgJaA9DCHcQO1PovPm/lIaUUpRoFUsyaBZHQHQHM0cfeUJ1fZQoaAZoCWgPQwj6CWe3lon3v5SGlFKUaBVLMmgWR0B0AbPRiPQwdX2UKGgGaAloD0MIPs+fNqoT+r+UhpRSlGgVSzJoFkdAc/y3/Pw/gXV9lChoBmgJaA9DCGDpfHiW4Pa/lIaUUpRoFUsyaBZHQHP3rORkmQd1fZQoaAZoCWgPQwim8KDZdS/3v5SGlFKUaBVLMmgWR0B0FXpX6qKhdX2UKGgGaAloD0MIrAK1GDxM+b+UhpRSlGgVSzJoFkdAdA/5/LDAJ3V9lChoBmgJaA9DCBkg0QSKGP6/lIaUUpRoFUsyaBZHQHQK+lTFVDN1fZQoaAZoCWgPQwhbsirCTQb5v5SGlFKUaBVLMmgWR0B0BfL1VYITdX2UKGgGaAloD0MIguFcwwyN+r+UhpRSlGgVSzJoFkdAdCREmY0EYHV9lChoBmgJaA9DCOLkfoeiQPu/lIaUUpRoFUsyaBZHQHQex4D9wWF1fZQoaAZoCWgPQwhFuMmoMoz4v5SGlFKUaBVLMmgWR0B0Gc0pEx7BdX2UKGgGaAloD0MIpU5AE2GD9L+UhpRSlGgVSzJoFkdAdBTGkep4r3V9lChoBmgJaA9DCGOXqN4aGPu/lIaUUpRoFUsyaBZHQHQyFCw8nu11fZQoaAZoCWgPQwgm/b0UHrT9v5SGlFKUaBVLMmgWR0B0LJRvWH1wdX2UKGgGaAloD0MIrg/rjVrh9r+UhpRSlGgVSzJoFkdAdCect5D7ZXV9lChoBmgJaA9DCOM2GsBbIPW/lIaUUpRoFUsyaBZHQHQik3GXHBF1fZQoaAZoCWgPQwhBSBYwgVv6v5SGlFKUaBVLMmgWR0B0QFJul41QdX2UKGgGaAloD0MID5pd91Zk/L+UhpRSlGgVSzJoFkdAdDrSxqwhXHV9lChoBmgJaA9DCFddh2pKcvy/lIaUUpRoFUsyaBZHQHQ11abF0gd1fZQoaAZoCWgPQwgrajANw8f3v5SGlFKUaBVLMmgWR0B0MMsOG0u2dX2UKGgGaAloD0MIlkG1wYmo+L+UhpRSlGgVSzJoFkdAdE5h+vyLAHV9lChoBmgJaA9DCNeKNse5zfy/lIaUUpRoFUsyaBZHQHRI5uVHFxZ1fZQoaAZoCWgPQwgPfXcrSzT5v5SGlFKUaBVLMmgWR0B0Q+iblRxcdX2UKGgGaAloD0MIHaopyTrc+L+UhpRSlGgVSzJoFkdAdD7eMAFPi3V9lChoBmgJaA9DCIYeMXpuYfm/lIaUUpRoFUsyaBZHQHRYEpd8iOh1fZQoaAZoCWgPQwiob5nTZfH5v5SGlFKUaBVLMmgWR0B0UozvZyuIdX2UKGgGaAloD0MIVb5nJEIj/r+UhpRSlGgVSzJoFkdAdE2HLRrrPnV9lChoBmgJaA9DCLmrV5HRAfO/lIaUUpRoFUsyaBZHQHRIdcfNiYt1fZQoaAZoCWgPQwjABkSIK6f5v5SGlFKUaBVLMmgWR0B0X/FS88LbdX2UKGgGaAloD0MICaaaWUvB+7+UhpRSlGgVSzJoFkdAdFpwXqJMx3V9lChoBmgJaA9DCNNqSNxjqfe/lIaUUpRoFUsyaBZHQHRVbZBcAzZ1fZQoaAZoCWgPQwifdCLBVHP9v5SGlFKUaBVLMmgWR0B0UF10T101dX2UKGgGaAloD0MIqIsUysLX97+UhpRSlGgVSzJoFkdAdGese4kNWnV9lChoBmgJaA9DCP6cgvxs5Pu/lIaUUpRoFUsyaBZHQHRiJgssg+11fZQoaAZoCWgPQwi4rwPnjGj2v5SGlFKUaBVLMmgWR0B0XSA7PppwdX2UKGgGaAloD0MIDw9h/DQu+L+UhpRSlGgVSzJoFkdAdFgOdXko4XV9lChoBmgJaA9DCMGpDyTv3Pq/lIaUUpRoFUsyaBZHQHRv402tMf11fZQoaAZoCWgPQwg/OQoQBfPzv5SGlFKUaBVLMmgWR0B0alxffGdadX2UKGgGaAloD0MIVvSHZp5c+b+UhpRSlGgVSzJoFkdAdGVWXTmW+3V9lChoBmgJaA9DCHAJwD+lyv6/lIaUUpRoFUsyaBZHQHRgSDmKZUl1fZQoaAZoCWgPQwgt0O6QYsD/v5SGlFKUaBVLMmgWR0B0d6NPxhDxdX2UKGgGaAloD0MIca5hhsYT+r+UhpRSlGgVSzJoFkdAdHIcQAdXDHV9lChoBmgJaA9DCHNjesIST/i/lIaUUpRoFUsyaBZHQHRtFnZkCmx1fZQoaAZoCWgPQwiFzmvsEhX+v5SGlFKUaBVLMmgWR0B0aAWBSUC8dX2UKGgGaAloD0MI4Qz+fjFb/7+UhpRSlGgVSzJoFkdAdH+wqRU3oHV9lChoBmgJaA9DCA4uHXOeMfa/lIaUUpRoFUsyaBZHQHR6KoESuhd1fZQoaAZoCWgPQwgF/YUeMXr7v5SGlFKUaBVLMmgWR0B0dSR+z+m4dX2UKGgGaAloD0MI6nb2lQdp+7+UhpRSlGgVSzJoFkdAdHATVlPJrHV9lChoBmgJaA9DCIOj5NU5BvS/lIaUUpRoFUsyaBZHQHSHUp3HJcR1fZQoaAZoCWgPQwi1+1WA7/b2v5SGlFKUaBVLMmgWR0B0gcvZh8YydX2UKGgGaAloD0MItTLhl/r5+b+UhpRSlGgVSzJoFkdAdHzGhEjPfXV9lChoBmgJaA9DCPJbdLLU+vy/lIaUUpRoFUsyaBZHQHR3teUpuuR1fZQoaAZoCWgPQwgomgewyC/5v5SGlFKUaBVLMmgWR0B0j1SvTw2EdX2UKGgGaAloD0MI+IpuvabH97+UhpRSlGgVSzJoFkdAdInP557gKnV9lChoBmgJaA9DCG3kuinltfS/lIaUUpRoFUsyaBZHQHSEy4SYgJV1fZQoaAZoCWgPQwgEq+rld1r+v5SGlFKUaBVLMmgWR0B0f7zDn/1hdX2UKGgGaAloD0MIZD4g0Jm0+b+UhpRSlGgVSzJoFkdAdJcvd/J/5XV9lChoBmgJaA9DCBzTE5Z4QPm/lIaUUpRoFUsyaBZHQHSRqFZgXuV1fZQoaAZoCWgPQwjJkGPrGcL3v5SGlFKUaBVLMmgWR0B0jKVjZteldX2UKGgGaAloD0MIQfFjzF1L9r+UhpRSlGgVSzJoFkdAdIeUliSaE3V9lChoBmgJaA9DCCv6QzNP7vu/lIaUUpRoFUsyaBZHQHSfSTMaCMB1fZQoaAZoCWgPQwgn28AdqFP1v5SGlFKUaBVLMmgWR0B0mcZEUj9odX2UKGgGaAloD0MIWYgOgSMB/7+UhpRSlGgVSzJoFkdAdJTCNCJGfHV9lChoBmgJaA9DCPFneLMGb/u/lIaUUpRoFUsyaBZHQHSPscdYGMZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 5000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True  True  True]", "bounded_above": "[ True  True  True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "False", "Numpy": "1.22.4", "Gym": "0.21.0"}}