thwri's picture
Update README.md
37f660a verified
metadata
license: mit
base_model:
  - microsoft/Florence-2-large
datasets:
  - Ejafa/ye-pop
tags:
  - art
pipeline_tag: image-to-text
language:
  - en
library_name: transformers

microsoft/Florence-2-large tuned on Ejafa/ye-pop captioned with CogVLM2

This repository contains a fine-tuned version of the microsoft/Florence-2-large model. The model has been tuned on a 38,000 image subset of the Ejafa/ye-pop dataset, with captions generated using THUDM/cogvlm2-llama3-chat-19B.

Training Details

  • Vision Encoder: The vision encoder was frozen during training.
  • Batch Size: 32
  • Gradient Accumulation Steps: 8
  • Learning Rate: 4.2667e-5
  • Optimizer: AdamW
  • Scheduler: linear
  • Epochs: 7

Dataset

The fine-tuning process utilized a 38,000 image subset from the Ejafa/ye-pop dataset. This dataset contains a wide array of images with varying subjects, providing a robust training ground for improving the model's captioning abilities.

Captioning

The captions were generated using THUDM/cogvlm2-llama3-chat-19B.

Usage

To use this model, you can load it directly from the Hugging Face Model Hub:

from transformers import AutoModelForCausalLM, AutoProcessor, AutoConfig
import torch

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

model = AutoModelForCausalLM.from_pretrained("thwri/CogFlorence-2-Large-Freeze", trust_remote_code=True).to(device).eval()
processor = AutoProcessor.from_pretrained("thwri/CogFlorence-2-Large-Freeze", trust_remote_code=True)

# Function to run the model on an example
def run_example(task_prompt, image):
    prompt = task_prompt

    # Ensure the image is in RGB mode
    if image.mode != "RGB":
        image = image.convert("RGB")

    inputs = processor(text=prompt, images=image, return_tensors="pt").to(device)
    generated_ids = model.generate(
        input_ids=inputs["input_ids"],
        pixel_values=inputs["pixel_values"],
        max_new_tokens=1024,
        num_beams=3,
        do_sample=True
    )
    generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
    parsed_answer = processor.post_process_generation(generated_text, task=task_prompt, image_size=(image.width, image.height))
    return parsed_answer

from PIL import Image
import requests
import copy

url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true"
image = Image.open(requests.get(url, stream=True).raw)
result = run_example("<MORE_DETAILED_CAPTION>" , image)
print(result)

# {'<MORE_DETAILED_CAPTION>': 'a turquoise volkswagen beetle parked on a cobblestone street in front of a yellow wall with two wooden doors. the car's body is painted in a vibrant shade of teal, with a glossy finish that reflects the sunlight, and the wheels are polished with a silver hubcap. the building behind the car has a weathered, aged appearance, with visible cracks and peeling paint. the sky above is clear and blue, suggesting a sunny day.'}