|
--- |
|
license: apache-2.0 |
|
inference: true |
|
widget: |
|
- text: "[INST] <<SYS>>\nGiven an image description, generate one or two multiple-choice questions that verifies if the image description is correct.\nClassify each concept into a type (object, human, animal, food, activity, attribute, counting, color, material, spatial, location, shape, other), and then generate a question for each type.\n\n<</SYS>>\n\nDescription: a blue rabbit and a red plane [/INST] Entities:" |
|
pipeline_tag: text-generation |
|
tags: |
|
- text-generation-inference |
|
- llama2 |
|
- text-to-image |
|
datasets: |
|
- TIFA |
|
language: |
|
- en |
|
--- |
|
This is the text parsing and question generation model for the ICCV 2023 paper [TIFA: Accurate and Interpretable Text-to-Image Faithfulness Evaluation with Question Answering](https://arxiv.org/abs/2303.11897) |
|
|
|
We introduce TIFA (Text-to-Image Faithfulness evaluation with question Answering), an automatic evaluation metric that measures the faithfulness of a generated image to its text input via visual question answering (VQA). Specifically, given a text input, we automatically generate several question-answer pairs using a language model. We calculate image faithfulness by checking whether existing VQA models can answer these questions using the generated image. |
|
|
|
Specifically, this fine-tuned LLaMA 2 model is the substitute for the GPT-3 model in the paper. It can parse an arbitrary prompt into visual entities, attributes, relations, etc. and generate question-answer tuples for each of them. See examples below. |
|
|
|
|
|
# QuickStart |
|
|
|
All codes are from <https://github.com/Yushi-Hu/tifa>. Clone this repo to easily use this model together with other modules (e.g. VQA) provided in TIFA. |
|
|
|
Please follow the prompt format, which will give the best performance. |
|
|
|
|
|
```python |
|
import torch |
|
import transformers |
|
|
|
# prepare the LLaMA 2 model |
|
model_name = "/gscratch/tial/yushihu/tifa-all/llama2/results/llama2/final_question_generation_checkpoint" |
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=model_name, |
|
torch_dtype=torch.float16, |
|
device_map="auto", |
|
) |
|
|
|
|
|
# formating prompt following LLaMA 2 style |
|
def create_qg_prompt(caption): |
|
INTRO_BLURB = "Given an image description, generate one or two multiple-choice questions that verifies if the image description is correct.\nClassify each concept into a type (object, human, animal, food, activity, attribute, counting, color, material, spatial, location, shape, other), and then generate a question for each type.\n" |
|
formated_prompt = f"<s>[INST] <<SYS>>\n{INTRO_BLURB}\n<</SYS>>\n\n" |
|
formated_prompt += f"Description: {caption} [/INST] Entities:" |
|
return formated_prompt |
|
|
|
|
|
test_caption = "a blue rabbit and a red plane" |
|
|
|
# create prompt |
|
prompt = create_qg_prompt(text_caption) |
|
|
|
# text completion |
|
sequences = pipeline( |
|
prompt, do_sample=False, num_beams=5, num_return_sequences=1, max_length=512) |
|
output = sequences[0]['generated_text'][len(prompt):] |
|
output = output.split('\n\n')[0] |
|
|
|
# output |
|
print(output) |
|
|
|
#### Expected output ### |
|
# rabbit, plane |
|
# Activites: |
|
# Colors: blue, red |
|
# Counting: |
|
# Other attributes: |
|
# About rabbit (animal): |
|
# Q: is this a rabbit? |
|
# Choices: yes, no |
|
# A: yes |
|
# About rabbit (animal): |
|
# Q: what animal is in the picture? |
|
# Choices: rabbit, dog, cat, fish |
|
# A: rabbit |
|
# About plane (object): |
|
# Q: is this a plane? |
|
# Choices: yes, no |
|
# A: yes |
|
# About plane (object): |
|
# Q: what type of vehicle is this? |
|
# Choices: plane, car, motorcycle, bus |
|
# A: plane |
|
# About blue (color): |
|
# Q: is the rabbit blue? |
|
# Choices: yes, no |
|
# A: yes |
|
# About blue (color): |
|
# Q: what color is the rabbit? |
|
# Choices: blue, red, yellow, green |
|
# A: blue |
|
# About red (color): |
|
# Q: is the plane red? |
|
# Choices: yes, no |
|
# A: yes |
|
# About red (color): |
|
# Q: what color is the plane? |
|
# Choices: red, blue, yellow, green |
|
# A: red |
|
``` |
|
|
|
# Use this LM under tifascore package |
|
|
|
tifascore provides extra functions to parse this output etc. First install tifascore according to <https://github.com/Yushi-Hu/tifa>. Then the usage is below |
|
|
|
```python |
|
from tifascore import get_llama2_pipeline, get_llama2_question_and_answers |
|
|
|
pipeline = get_llama2_pipeline("tifa-benchmark/llama2_tifa_question_generation") |
|
|
|
print(get_llama2_question_and_answers(pipeline, "a blue rabbit and a red plane")) |
|
|
|
#### Expected output ### |
|
# [{'caption': 'a blue rabbit and a red plane', 'element': 'rabbit', 'question': 'what animal is in the picture?', 'choices': ['rabbit', 'dog', 'cat', 'fish'], 'answer': 'rabbit', 'element_type': 'animal/human'}, {'caption': 'a blue rabbit and a red plane', 'element': 'plane', 'question': 'is this a plane?', 'choices': ['yes', 'no'], 'answer': 'yes', 'element_type': 'object'}, {'caption': 'a blue rabbit and a red plane', 'element': 'plane', 'question': 'what type of vehicle is this?', 'choices': ['plane', 'car', 'motorcycle', 'bus'], 'answer': 'plane', 'element_type': 'object'}, {'caption': 'a blue rabbit and a red plane', 'element': 'blue', 'question': 'is the rabbit blue?', 'choices': ['yes', 'no'], 'answer': 'yes', 'element_type': 'color'}, {'caption': 'a blue rabbit and a red plane', 'element': 'blue', 'question': 'what color is the rabbit?', 'choices': ['blue', 'red', 'yellow', 'green'], 'answer': 'blue', 'element_type': 'color'}, {'caption': 'a blue rabbit and a red plane', 'element': 'red', 'question': 'is the plane red?', 'choices': ['yes', 'no'], 'answer': 'yes', 'element_type': 'color'}, {'caption': 'a blue rabbit and a red plane', 'element': 'red', 'question': 'what color is the plane?', 'choices': ['red', 'blue', 'yellow', 'green'], 'answer': 'red', 'element_type': 'color'}] |
|
``` |
|
|
|
## Bibtex |
|
``` |
|
@article{hu2023tifa, |
|
title={Tifa: Accurate and interpretable text-to-image faithfulness evaluation with question answering}, |
|
author={Hu, Yushi and Liu, Benlin and Kasai, Jungo and Wang, Yizhong and Ostendorf, Mari and Krishna, Ranjay and Smith, Noah A}, |
|
journal={arXiv preprint arXiv:2303.11897}, |
|
year={2023} |
|
} |
|
``` |