Falcon3-1B-Base / README.md
puneeshkhanna's picture
Add Falcon3-1B-Base with random weights
62e8b6f
|
raw
history blame
6.54 kB
metadata
language:
  - en
  - es
  - pt
tags:
  - falcon3

Table of Contents

  1. TL;DR
  2. Model Details
  3. Usage
  4. Training Details
  5. Evaluation

TL;DR

Model Details

⚠️ This is a raw, pretrained model, which should be further finetuned for most usecases.

Model Description

  • Developed by: https://www.tii.ae
  • Model type: Causal decoder-only
  • Architecture: Transformer-base
  • Language(s) (NLP): Mainly English
  • License: TII Falcon-LLM License 2.0

Usage

Find below some example scripts on how to use the model in transformers (Make sure to have the latest transformers, or the one built from source):

Using the Pytorch model with 🤗 transformers

Running the model on a CPU

Click to expand
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("tiiuae/Falcon3-7B-Base")
model = AutoModelForCausalLM.from_pretrained("tiiuae/Falcon3-7B-Base")

input_text = "Question: How many hours in one day? Answer: "
input_ids = tokenizer(input_text, return_tensors="pt").input_ids

outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))

Running the model on a GPU

Click to expand
# pip install accelerate
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("tiiuae/Falcon3-7B-Base")
model = AutoModelForCausalLM.from_pretrained("tiiuae/Falcon3-7B-Base", device_map="auto")

input_text = "Question: How many hours in one day? Answer: "
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")

outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))

Running the model on a GPU using torch.compile

Click to expand
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("tiiuae/Falcon3-7B-Base")
model = AutoModelForCausalLM.from_pretrained("tiiuae/Falcon3-7B-Base", torch_dtype=torch.bfloat16).to(0)

model = torch.compile(model)

input_text = "Question: How many hours in one day? Answer: "
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")

outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))

Training Details

Training Data

Falcon3-7B is trained on 15 Gigatokens of datasets comprising of web, code, STEM, high quality and mutlilingual data.

Training Procedure

Falcon3-7B is trained on 256 H100 nodes (world size 2048).

Training Hyperparameters

Hyperparameter Value Comment
Precision bfloat16
Optimizer AdamW
Max learning rate 6e-4 Following a WSD (warmup-stable-decay)
learning rate scheduler
Weight decay 1e-1
z-loss 1e-4
Batch size Variable Batch size was gradually increased
during the training

Evaluation

Category Benchmark Llama3.1-8B Qwen2-7B Qwen2.5-7B Falcon3-7B-Base
General MMLU (5-shot) 65.2 70.4 74.2 67.5
MMLU-PRO (5-shot) 32.7 42.1 43.5 39.2
IFEval 12.0 30.6 33.9 34.3
Math GSM8K (5-shot) 49.4 77.9 82.9 76.2
MATH(4-shot) 4.1 17.5 15.5 18.0
Reasoning Arc Challenge (25-shot) 53.4 57.4 59.0 59.6
GPQA (0-shot) 31.0 31.9 33.0 35.5
MUSR (0-shot) 38.0 44.1 44.2 47.3
BBH (3-shot) 46.5 53.3 54.0 51.0
CommonSense Understanding PIQA (0-shot) 80.3 79.8 78.7 77.7
SciQ (0-shot) 96.3 95.9 96.6 95.3
Winogrande (0-shot) 74.0 72.1 72.9 71.0
OpenbookQA (0-shot) 33.4 35.2 33.6 31.4

Citation