fix size of table and names of columns
#2
by
wdevazelhes
- opened
- README.md +152 -94
- model.safetensors.index.json +172 -0
README.md
CHANGED
@@ -1,79 +1,137 @@
|
|
1 |
---
|
2 |
language:
|
3 |
- en
|
4 |
-
- fr
|
5 |
- es
|
6 |
- pt
|
7 |
tags:
|
8 |
- falcon3
|
9 |
-
license: other
|
10 |
-
license_name: falcon-llm-license
|
11 |
license_link: https://falconllm.tii.ae/falcon-terms-and-conditions.html
|
12 |
-
library_name: transformers
|
13 |
---
|
14 |
|
15 |
-
<div align="center">
|
16 |
-
<img src="https://huggingface.co/datasets/tiiuae/documentation-images/resolve/main/general/falco3-logo.png" alt="drawing" width="500"/>
|
17 |
-
</div>
|
18 |
|
19 |
-
# Falcon3-1B-Base
|
20 |
|
21 |
-
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
|
|
26 |
|
27 |
-
⚠️ **This is a raw, pretrained model, which should be further finetuned using SFT, RLHF, continued pretraining, etc. for most use cases.**
|
28 |
|
29 |
-
|
30 |
-
- Architecture
|
31 |
-
- Transformer-based causal decoder-only architecture
|
32 |
-
- 18 decoder blocks
|
33 |
-
- Grouped Query Attention (GQA) for faster inference: 8 query heads and 4 key-value heads
|
34 |
-
- Wider head dimension: 256
|
35 |
-
- High RoPE value to support long context understanding: 1000042
|
36 |
-
- Uses SwiGLU and RMSNorm
|
37 |
-
- 4K context length
|
38 |
-
- 131K vocab size
|
39 |
-
- Pruned and healed using larger Falcon models (3B and 7B respectively) on only 80 Gigatokens of datasets comprising of web, code, STEM, high quality and multilingual data using 256 H100 GPU chips
|
40 |
-
- Supports EN, FR, ES, PT
|
41 |
-
- Developed by [Technology Innovation Institute](https://www.tii.ae)
|
42 |
-
- License: TII Falcon-LLM License 2.0
|
43 |
-
- Model Release Date: December 2024
|
44 |
|
|
|
45 |
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
<details>
|
49 |
<summary> Click to expand </summary>
|
50 |
|
51 |
```python
|
52 |
import torch
|
53 |
-
from transformers import
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
|
63 |
```
|
64 |
|
65 |
</details>
|
66 |
|
67 |
-
<br>
|
68 |
|
69 |
-
|
70 |
-
We report in the following table our internal pipeline benchmarks.
|
71 |
-
- We use [lm-evaluation harness](https://github.com/EleutherAI/lm-evaluation-harness).
|
72 |
-
- We report **raw scores**.
|
73 |
-
- We use same batch-size across all models.
|
74 |
|
|
|
75 |
|
|
|
76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
<table border="1" style="width: 100%; text-align: center; border-collapse: collapse;">
|
78 |
<colgroup>
|
79 |
<col style="width: 10%;">
|
@@ -81,6 +139,7 @@ We report in the following table our internal pipeline benchmarks.
|
|
81 |
<col style="width: 7%;">
|
82 |
<col style="width: 7%;">
|
83 |
<col style="width: 7%;">
|
|
|
84 |
<col style="background-color: rgba(80, 15, 213, 0.5); width: 7%;">
|
85 |
</colgroup>
|
86 |
<thead>
|
@@ -90,6 +149,7 @@ We report in the following table our internal pipeline benchmarks.
|
|
90 |
<th>Llama-3.2-1B</th>
|
91 |
<th>Qwen2.5-1.5B</th>
|
92 |
<th>SmolLM2-1.7B</th>
|
|
|
93 |
<th>Falcon3-1B-Base</th>
|
94 |
</tr>
|
95 |
</thead>
|
@@ -98,116 +158,114 @@ We report in the following table our internal pipeline benchmarks.
|
|
98 |
<td rowspan="3">General</td>
|
99 |
<td>MMLU (5-shot)</td>
|
100 |
<td>31.1</td>
|
101 |
-
<td
|
102 |
-
<td>50.
|
|
|
103 |
<td>42.5</td>
|
104 |
</tr>
|
105 |
<tr>
|
106 |
<td>MMLU-PRO (5-shot)</td>
|
107 |
<td>11.7</td>
|
108 |
-
<td
|
109 |
-
<td>21.
|
110 |
-
<td>
|
|
|
111 |
</tr>
|
112 |
<tr>
|
113 |
<td>IFEval</td>
|
114 |
-
<td>14.
|
115 |
-
<td
|
116 |
<td>24.2</td>
|
117 |
-
<td>
|
|
|
118 |
</tr>
|
119 |
<tr>
|
120 |
<td rowspan="2">Math</td>
|
121 |
<td>GSM8K (5-shot)</td>
|
122 |
<td>6.6</td>
|
123 |
-
<td
|
124 |
-
<td>31.
|
|
|
125 |
<td>34.3</td>
|
126 |
</tr>
|
127 |
<tr>
|
128 |
-
<td>MATH
|
129 |
-
<td>0.
|
130 |
-
<td
|
131 |
-
<td>1.
|
|
|
132 |
<td>2.2</td>
|
133 |
</tr>
|
134 |
<tr>
|
135 |
<td rowspan="4">Reasoning</td>
|
136 |
<td>Arc Challenge (25-shot)</td>
|
137 |
<td>40.2</td>
|
138 |
-
<td
|
139 |
<td>54.1</td>
|
140 |
-
<td>
|
|
|
141 |
</tr>
|
142 |
<tr>
|
143 |
<td>GPQA (0-shot)</td>
|
144 |
-
<td>24.
|
145 |
-
<td>28.
|
146 |
-
<td
|
|
|
147 |
<td>28.1</td>
|
148 |
</tr>
|
149 |
<tr>
|
150 |
<td>MUSR (0-shot)</td>
|
151 |
<td>34.5</td>
|
152 |
<td>35.5</td>
|
153 |
-
<td>34.
|
154 |
-
<td
|
|
|
155 |
</tr>
|
156 |
<tr>
|
157 |
<td>BBH (3-shot)</td>
|
158 |
<td>31.2</td>
|
159 |
-
<td
|
160 |
-
<td>34.
|
161 |
-
<td>36.
|
|
|
162 |
</tr>
|
163 |
<tr>
|
164 |
<td rowspan="4">CommonSense Understanding</td>
|
165 |
<td>PIQA (0-shot)</td>
|
166 |
-
<td>74.
|
167 |
-
<td>76
|
168 |
-
<td
|
|
|
169 |
<td>74.5</td>
|
170 |
</tr>
|
171 |
<tr>
|
172 |
<td>SciQ (0-shot)</td>
|
173 |
<td>88.5</td>
|
174 |
-
<td
|
175 |
<td>90.8</td>
|
|
|
176 |
<td>91.1</td>
|
177 |
</tr>
|
178 |
<tr>
|
179 |
<td>Winogrande (0-shot)</td>
|
180 |
<td>60.4</td>
|
181 |
-
<td>63
|
182 |
-
<td
|
|
|
183 |
<td>61.2</td>
|
184 |
</tr>
|
185 |
<tr>
|
186 |
<td>OpenbookQA (0-shot)</td>
|
187 |
<td>37.4</td>
|
188 |
<td>40.4</td>
|
189 |
-
<td
|
190 |
-
<td>41.
|
|
|
191 |
</tr>
|
192 |
</tbody>
|
193 |
</table>
|
194 |
|
195 |
-
## Useful links
|
196 |
-
- View our [release blogpost](https://huggingface.co/blog/falcon3).
|
197 |
-
- Feel free to join [our discord server](https://discord.gg/fwXpMyGc) if you have any questions or to interact with our researchers and developers.
|
198 |
|
199 |
-
## Technical Report
|
200 |
-
Coming soon....
|
201 |
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
```
|
206 |
-
@misc{Falcon3,
|
207 |
-
title = {The Falcon 3 Family of Open Models},
|
208 |
-
url = {https://huggingface.co/blog/falcon3},
|
209 |
-
author = {Falcon-LLM Team},
|
210 |
-
month = {December},
|
211 |
-
year = {2024}
|
212 |
-
}
|
213 |
-
```
|
|
|
1 |
---
|
2 |
language:
|
3 |
- en
|
|
|
4 |
- es
|
5 |
- pt
|
6 |
tags:
|
7 |
- falcon3
|
8 |
+
license: other
|
9 |
+
license_name: falcon-llm-license
|
10 |
license_link: https://falconllm.tii.ae/falcon-terms-and-conditions.html
|
|
|
11 |
---
|
12 |
|
|
|
|
|
|
|
13 |
|
|
|
14 |
|
15 |
+
# Table of Contents
|
16 |
|
17 |
+
0. [TL;DR](#TL;DR)
|
18 |
+
1. [Model Details](#model-details)
|
19 |
+
2. [Usage](#usage)
|
20 |
+
3. [Training Details](#training-details)
|
21 |
+
4. [Evaluation](#evaluation)
|
22 |
|
|
|
23 |
|
24 |
+
# TL;DR
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
+
# Model Details
|
27 |
|
28 |
+
⚠️ **This is a raw, pretrained model, which should be further finetuned for most usecases.**
|
29 |
+
|
30 |
+
## Model Description
|
31 |
+
|
32 |
+
- **Developed by:** [https://www.tii.ae](https://www.tii.ae)
|
33 |
+
- **Model type:** Causal decoder-only
|
34 |
+
- **Architecture:** Transformer-base
|
35 |
+
- **Language(s) (NLP):** Mainly English
|
36 |
+
- **License:** TII Falcon-LLM License 2.0
|
37 |
+
|
38 |
+
<br>
|
39 |
+
|
40 |
+
# Usage
|
41 |
+
|
42 |
+
Find below some example scripts on how to use the model in `transformers` (Make sure to have the latest transformers, or the one built from source):
|
43 |
+
|
44 |
+
## Using the Pytorch model with 🤗 transformers
|
45 |
+
|
46 |
+
### Running the model on a CPU
|
47 |
+
|
48 |
+
<details>
|
49 |
+
<summary> Click to expand </summary>
|
50 |
+
|
51 |
+
```python
|
52 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
53 |
+
|
54 |
+
tokenizer = AutoTokenizer.from_pretrained("tiiuae/Falcon3-7B-Base")
|
55 |
+
model = AutoModelForCausalLM.from_pretrained("tiiuae/Falcon3-7B-Base")
|
56 |
+
|
57 |
+
input_text = "Question: How many hours in one day? Answer: "
|
58 |
+
input_ids = tokenizer(input_text, return_tensors="pt").input_ids
|
59 |
+
|
60 |
+
outputs = model.generate(input_ids)
|
61 |
+
print(tokenizer.decode(outputs[0]))
|
62 |
+
```
|
63 |
+
|
64 |
+
</details>
|
65 |
+
|
66 |
+
### Running the model on a GPU
|
67 |
+
|
68 |
+
<details>
|
69 |
+
<summary> Click to expand </summary>
|
70 |
+
|
71 |
+
```python
|
72 |
+
# pip install accelerate
|
73 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
74 |
+
|
75 |
+
tokenizer = AutoTokenizer.from_pretrained("tiiuae/Falcon3-7B-Base")
|
76 |
+
model = AutoModelForCausalLM.from_pretrained("tiiuae/Falcon3-7B-Base", device_map="auto")
|
77 |
+
|
78 |
+
input_text = "Question: How many hours in one day? Answer: "
|
79 |
+
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
|
80 |
+
|
81 |
+
outputs = model.generate(input_ids)
|
82 |
+
print(tokenizer.decode(outputs[0]))
|
83 |
+
```
|
84 |
+
|
85 |
+
</details>
|
86 |
+
|
87 |
+
### Running the model on a GPU using `torch.compile`
|
88 |
|
89 |
<details>
|
90 |
<summary> Click to expand </summary>
|
91 |
|
92 |
```python
|
93 |
import torch
|
94 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
95 |
+
|
96 |
+
tokenizer = AutoTokenizer.from_pretrained("tiiuae/Falcon3-7B-Base")
|
97 |
+
model = AutoModelForCausalLM.from_pretrained("tiiuae/Falcon3-7B-Base", torch_dtype=torch.bfloat16).to(0)
|
98 |
+
|
99 |
+
model = torch.compile(model)
|
100 |
+
|
101 |
+
input_text = "Question: How many hours in one day? Answer: "
|
102 |
+
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
|
103 |
+
|
104 |
+
outputs = model.generate(input_ids)
|
105 |
+
print(tokenizer.decode(outputs[0]))
|
106 |
```
|
107 |
|
108 |
</details>
|
109 |
|
|
|
110 |
|
111 |
+
# Training Details
|
|
|
|
|
|
|
|
|
112 |
|
113 |
+
## Training Data
|
114 |
|
115 |
+
Falcon3-7B is trained on 15 Gigatokens of datasets comprising of web, code, STEM, high quality and mutlilingual data.
|
116 |
|
117 |
+
## Training Procedure
|
118 |
+
|
119 |
+
Falcon3-7B is trained on 256 H100 nodes (world size 2048).
|
120 |
+
|
121 |
+
### Training Hyperparameters
|
122 |
+
|
123 |
+
| **Hyperparameter** | **Value** | **Comment** |
|
124 |
+
|--------------------|------------|---------------------------------------|
|
125 |
+
| Precision | `bfloat16` | |
|
126 |
+
| Optimizer | AdamW | |
|
127 |
+
| Max learning rate | 6e-4 | Following a WSD (warmup-stable-decay) |
|
128 |
+
| | | learning rate scheduler |
|
129 |
+
| Weight decay | 1e-1 | |
|
130 |
+
| z-loss | 1e-4 | |
|
131 |
+
| Batch size | Variable | Batch size was gradually increased |
|
132 |
+
| | | during the training |
|
133 |
+
|
134 |
+
# Evaluation
|
135 |
<table border="1" style="width: 100%; text-align: center; border-collapse: collapse;">
|
136 |
<colgroup>
|
137 |
<col style="width: 10%;">
|
|
|
139 |
<col style="width: 7%;">
|
140 |
<col style="width: 7%;">
|
141 |
<col style="width: 7%;">
|
142 |
+
<col style="width: 7%;">
|
143 |
<col style="background-color: rgba(80, 15, 213, 0.5); width: 7%;">
|
144 |
</colgroup>
|
145 |
<thead>
|
|
|
149 |
<th>Llama-3.2-1B</th>
|
150 |
<th>Qwen2.5-1.5B</th>
|
151 |
<th>SmolLM2-1.7B</th>
|
152 |
+
<th>gemma-2-2b</th>
|
153 |
<th>Falcon3-1B-Base</th>
|
154 |
</tr>
|
155 |
</thead>
|
|
|
158 |
<td rowspan="3">General</td>
|
159 |
<td>MMLU (5-shot)</td>
|
160 |
<td>31.1</td>
|
161 |
+
<td>61</td>
|
162 |
+
<td>50.2</td>
|
163 |
+
<td>53.1</td>
|
164 |
<td>42.5</td>
|
165 |
</tr>
|
166 |
<tr>
|
167 |
<td>MMLU-PRO (5-shot)</td>
|
168 |
<td>11.7</td>
|
169 |
+
<td>28.5</td>
|
170 |
+
<td>21.4</td>
|
171 |
+
<td>22.1</td>
|
172 |
+
<td>16.2</td>
|
173 |
</tr>
|
174 |
<tr>
|
175 |
<td>IFEval</td>
|
176 |
+
<td>14.9</td>
|
177 |
+
<td>26.1</td>
|
178 |
<td>24.2</td>
|
179 |
+
<td>20.4</td>
|
180 |
+
<td>25.3</td>
|
181 |
</tr>
|
182 |
<tr>
|
183 |
<td rowspan="2">Math</td>
|
184 |
<td>GSM8K (5-shot)</td>
|
185 |
<td>6.6</td>
|
186 |
+
<td>62.3</td>
|
187 |
+
<td>31.1</td>
|
188 |
+
<td>25.6</td>
|
189 |
<td>34.3</td>
|
190 |
</tr>
|
191 |
<tr>
|
192 |
+
<td>MATH (4-shot)</td>
|
193 |
+
<td>0.3</td>
|
194 |
+
<td>6.8</td>
|
195 |
+
<td>1.5</td>
|
196 |
+
<td>2.6</td>
|
197 |
<td>2.2</td>
|
198 |
</tr>
|
199 |
<tr>
|
200 |
<td rowspan="4">Reasoning</td>
|
201 |
<td>Arc Challenge (25-shot)</td>
|
202 |
<td>40.2</td>
|
203 |
+
<td>54.8</td>
|
204 |
<td>54.1</td>
|
205 |
+
<td>53.7</td>
|
206 |
+
<td>48.2</td>
|
207 |
</tr>
|
208 |
<tr>
|
209 |
<td>GPQA (0-shot)</td>
|
210 |
+
<td>24.3</td>
|
211 |
+
<td>28.2</td>
|
212 |
+
<td>28.9</td>
|
213 |
+
<td>25.5</td>
|
214 |
<td>28.1</td>
|
215 |
</tr>
|
216 |
<tr>
|
217 |
<td>MUSR (0-shot)</td>
|
218 |
<td>34.5</td>
|
219 |
<td>35.5</td>
|
220 |
+
<td>34.8</td>
|
221 |
+
<td>42.8</td>
|
222 |
+
<td>41.9</td>
|
223 |
</tr>
|
224 |
<tr>
|
225 |
<td>BBH (3-shot)</td>
|
226 |
<td>31.2</td>
|
227 |
+
<td>41.1</td>
|
228 |
+
<td>34.3</td>
|
229 |
+
<td>36.8</td>
|
230 |
+
<td>36.1</td>
|
231 |
</tr>
|
232 |
<tr>
|
233 |
<td rowspan="4">CommonSense Understanding</td>
|
234 |
<td>PIQA (0-shot)</td>
|
235 |
+
<td>74.6</td>
|
236 |
+
<td>76</td>
|
237 |
+
<td>77.5</td>
|
238 |
+
<td>79.2</td>
|
239 |
<td>74.5</td>
|
240 |
</tr>
|
241 |
<tr>
|
242 |
<td>SciQ (0-shot)</td>
|
243 |
<td>88.5</td>
|
244 |
+
<td>93.1</td>
|
245 |
<td>90.8</td>
|
246 |
+
<td>95.7</td>
|
247 |
<td>91.1</td>
|
248 |
</tr>
|
249 |
<tr>
|
250 |
<td>Winogrande (0-shot)</td>
|
251 |
<td>60.4</td>
|
252 |
+
<td>63</td>
|
253 |
+
<td>66.1</td>
|
254 |
+
<td>68.6</td>
|
255 |
<td>61.2</td>
|
256 |
</tr>
|
257 |
<tr>
|
258 |
<td>OpenbookQA (0-shot)</td>
|
259 |
<td>37.4</td>
|
260 |
<td>40.4</td>
|
261 |
+
<td>44</td>
|
262 |
+
<td>41.8</td>
|
263 |
+
<td>41</td>
|
264 |
</tr>
|
265 |
</tbody>
|
266 |
</table>
|
267 |
|
|
|
|
|
|
|
268 |
|
|
|
|
|
269 |
|
270 |
+
|
271 |
+
# Citation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 6677635072
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00002-of-00002.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00002.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
15 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
16 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
17 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
18 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
19 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
20 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
21 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
22 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
23 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
24 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
25 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
26 |
+
"model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
27 |
+
"model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
28 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
29 |
+
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
30 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
31 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
32 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
33 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
34 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
35 |
+
"model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
36 |
+
"model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
37 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
38 |
+
"model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
39 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
40 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
41 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
42 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
43 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
44 |
+
"model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
45 |
+
"model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
46 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
47 |
+
"model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
48 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
49 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
50 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
51 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
52 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
53 |
+
"model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
54 |
+
"model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
55 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
56 |
+
"model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
57 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
58 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
59 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
60 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
61 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
62 |
+
"model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
63 |
+
"model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
64 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
65 |
+
"model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
66 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
67 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
68 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
69 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
70 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
71 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
72 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
73 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
74 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
75 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
76 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
77 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
78 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
79 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
80 |
+
"model.layers.16.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
81 |
+
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
82 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
83 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
84 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
85 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
86 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
87 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
88 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
89 |
+
"model.layers.17.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
90 |
+
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
91 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
92 |
+
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
93 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
94 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
95 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
96 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
97 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
98 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
99 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
100 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
101 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
102 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
103 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
104 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
105 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
106 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
107 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
108 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
109 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
110 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
111 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
112 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
113 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
114 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
115 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
116 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
117 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
118 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
119 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
120 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
121 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
122 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
123 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
124 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
125 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
126 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
127 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
128 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
129 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
130 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
131 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
132 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
133 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
134 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
135 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
136 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
137 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
138 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
139 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
140 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
141 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
142 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
143 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
144 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
145 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
146 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
147 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
148 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
149 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
150 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
151 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
152 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
153 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
154 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
155 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
156 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
157 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
158 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
159 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
160 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
161 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
162 |
+
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
163 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
164 |
+
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
165 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
166 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
167 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
168 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
169 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
170 |
+
"model.norm.weight": "model-00002-of-00002.safetensors"
|
171 |
+
}
|
172 |
+
}
|