few formatting and unifying MATH Lvl-5 label
#2
by
wdevazelhes
- opened
README.md
CHANGED
@@ -6,37 +6,33 @@ language:
|
|
6 |
- pt
|
7 |
tags:
|
8 |
- falcon3
|
9 |
-
license: other
|
10 |
-
license_name: falcon-llm-license
|
11 |
license_link: https://falconllm.tii.ae/falcon-terms-and-conditions.html
|
12 |
-
library_name: transformers
|
13 |
---
|
14 |
|
15 |
-
<div align="center">
|
16 |
-
<img src="https://huggingface.co/datasets/tiiuae/documentation-images/resolve/main/general/falco3-logo.png" alt="drawing" width="500"/>
|
17 |
-
</div>
|
18 |
|
19 |
# Falcon3-3B-Base
|
20 |
|
21 |
-
**Falcon3** family of Open Foundation Models is a set of pretrained and instruct LLMs ranging from 1B to 10B
|
22 |
|
23 |
This repository contains the **Falcon3-3B-Base**. It achieves strong results on reasoning, language understanding, instruction following, code and mathematics tasks.
|
24 |
-
Falcon3-3B-Base supports 4 languages (
|
25 |
-
|
26 |
|
27 |
⚠️ **This is a raw, pretrained model, which should be further finetuned using SFT, RLHF, continued pretraining, etc. for most use cases.**
|
28 |
|
29 |
## Model Details
|
30 |
- Architecture
|
31 |
-
- Transformer
|
32 |
- 22 decoder blocks
|
33 |
-
- Grouped
|
34 |
- Wider head dimension: 256
|
35 |
- High RoPE value to support long context understanding: 1000042
|
36 |
-
- Uses
|
37 |
- 8K context length
|
38 |
- 131K vocab size
|
39 |
-
- Pruned and
|
40 |
- Supports EN, FR, ES, PT
|
41 |
- Developed by [Technology Innovation Institute](https://www.tii.ae)
|
42 |
- License: TII Falcon-LLM License 2.0
|
@@ -67,10 +63,7 @@ print(response[0]['generated_text'])
|
|
67 |
<br>
|
68 |
|
69 |
## Benchmarks
|
70 |
-
We report in the following table our internal pipeline benchmarks
|
71 |
-
- We use [lm-evaluation harness](https://github.com/EleutherAI/lm-evaluation-harness).
|
72 |
-
- We report **raw scores**.
|
73 |
-
- We use same batch-size across all models.
|
74 |
|
75 |
|
76 |
|
@@ -99,74 +92,74 @@ We report in the following table our internal pipeline benchmarks.
|
|
99 |
<td>MMLU (5-shot)</td>
|
100 |
<td>56.1</td>
|
101 |
<td><b>65.6</b></td>
|
102 |
-
<td>58.
|
103 |
<td>55.5</td>
|
104 |
</tr>
|
105 |
<tr>
|
106 |
<td>MMLU-PRO (5-shot)</td>
|
107 |
<td>24.9</td>
|
108 |
-
<td><b>
|
109 |
-
<td>26.
|
110 |
-
<td>28.
|
111 |
</tr>
|
112 |
<tr>
|
113 |
<td>IFEval</td>
|
114 |
-
<td>12.
|
115 |
-
<td>27</td>
|
116 |
-
<td>22.
|
117 |
-
<td><b>27.
|
118 |
</tr>
|
119 |
<tr>
|
120 |
<td rowspan="2">Math</td>
|
121 |
<td>GSM8K (5-shot)</td>
|
122 |
-
<td>26.
|
123 |
-
<td><b>
|
124 |
<td>25.7</td>
|
125 |
-
<td>63.
|
126 |
</tr>
|
127 |
<tr>
|
128 |
<td>MATH Lvl-5 (4-shot)</td>
|
129 |
-
<td>1.
|
130 |
-
<td>8.
|
131 |
-
<td>1.
|
132 |
-
<td><b>9.
|
133 |
</tr>
|
134 |
<tr>
|
135 |
<td rowspan="4">Reasoning</td>
|
136 |
<td>Arc Challenge (25-shot)</td>
|
137 |
-
<td>50.
|
138 |
-
<td><b>55.
|
139 |
-
<td>50.
|
140 |
-
<td>54.
|
141 |
</tr>
|
142 |
<tr>
|
143 |
<td>GPQA (0-shot)</td>
|
144 |
-
<td>27.
|
145 |
-
<td>27.
|
146 |
-
<td>
|
147 |
-
<td
|
148 |
</tr>
|
149 |
<tr>
|
150 |
<td>MUSR (0-shot)</td>
|
151 |
-
<td>35.
|
152 |
-
<td><b>43</b></td>
|
153 |
-
<td>42.
|
154 |
<td>37.5</td>
|
155 |
</tr>
|
156 |
<tr>
|
157 |
<td>BBH (3-shot)</td>
|
158 |
-
<td>38.
|
159 |
-
<td><b>46.
|
160 |
-
<td>40.
|
161 |
-
<td>44.
|
162 |
</tr>
|
163 |
<tr>
|
164 |
<td rowspan="4">CommonSense Understanding</td>
|
165 |
<td>PIQA (0-shot)</td>
|
166 |
-
<td>77.
|
167 |
-
<td><b>78.
|
168 |
-
<td>78.
|
169 |
-
<td>75.
|
170 |
</tr>
|
171 |
<tr>
|
172 |
<td>SciQ (0-shot)</td>
|
@@ -177,16 +170,16 @@ We report in the following table our internal pipeline benchmarks.
|
|
177 |
</tr>
|
178 |
<tr>
|
179 |
<td>Winogrande (0-shot)</td>
|
180 |
-
<td><b>69.
|
181 |
-
<td>68.
|
182 |
-
<td>68.
|
183 |
-
<td>64.
|
184 |
</tr>
|
185 |
<tr>
|
186 |
<td>OpenbookQA (0-shot)</td>
|
187 |
<td><b>43.2</b></td>
|
188 |
<td>42.2</td>
|
189 |
-
<td>43</td>
|
190 |
<td>39.4</td>
|
191 |
</tr>
|
192 |
</tbody>
|
@@ -201,11 +194,10 @@ Coming soon....
|
|
201 |
|
202 |
## Citation
|
203 |
If the Falcon3 family of models were helpful to your work, feel free to give us a cite.
|
204 |
-
|
205 |
```
|
206 |
@misc{Falcon3,
|
207 |
title = {The Falcon 3 Family of Open Models},
|
208 |
-
url = {https://huggingface.co/blog/falcon3},
|
209 |
author = {Falcon-LLM Team},
|
210 |
month = {December},
|
211 |
year = {2024}
|
|
|
6 |
- pt
|
7 |
tags:
|
8 |
- falcon3
|
9 |
+
license: other
|
10 |
+
license_name: falcon-llm-license
|
11 |
license_link: https://falconllm.tii.ae/falcon-terms-and-conditions.html
|
|
|
12 |
---
|
13 |
|
|
|
|
|
|
|
14 |
|
15 |
# Falcon3-3B-Base
|
16 |
|
17 |
+
**Falcon3** family of Open Foundation Models is a set of pretrained and instruct LLMs ranging from 1B to 10B.
|
18 |
|
19 |
This repository contains the **Falcon3-3B-Base**. It achieves strong results on reasoning, language understanding, instruction following, code and mathematics tasks.
|
20 |
+
Falcon3-3B-Base supports 4 languages (english, french, spanish, portuguese) and a context length up to 8K.
|
21 |
+
Falcon3-3B-Base pruned (depth + width) from Falcon3-7B-Base, was effeciently trained on only 100 GT using a knowledge distillation objective.
|
22 |
|
23 |
⚠️ **This is a raw, pretrained model, which should be further finetuned using SFT, RLHF, continued pretraining, etc. for most use cases.**
|
24 |
|
25 |
## Model Details
|
26 |
- Architecture
|
27 |
+
- Transformer based causal decoder only architecture
|
28 |
- 22 decoder blocks
|
29 |
+
- Grouped query attention (GQA) for faster inference: 12 query heads and 4 KV heads
|
30 |
- Wider head dimension: 256
|
31 |
- High RoPE value to support long context understanding: 1000042
|
32 |
+
- Uses SwiGLu and RMSNorm
|
33 |
- 8K context length
|
34 |
- 131K vocab size
|
35 |
+
- Pruned and Healed from Falcon3-7B-Base on only 100 Gigatokens of datasets comprising of web, code, STEM, high quality and mutlilingual data using 2048 H100 GPU chips
|
36 |
- Supports EN, FR, ES, PT
|
37 |
- Developed by [Technology Innovation Institute](https://www.tii.ae)
|
38 |
- License: TII Falcon-LLM License 2.0
|
|
|
63 |
<br>
|
64 |
|
65 |
## Benchmarks
|
66 |
+
We report in the following table our internal pipeline benchmarks:
|
|
|
|
|
|
|
67 |
|
68 |
|
69 |
|
|
|
92 |
<td>MMLU (5-shot)</td>
|
93 |
<td>56.1</td>
|
94 |
<td><b>65.6</b></td>
|
95 |
+
<td>58.6</td>
|
96 |
<td>55.5</td>
|
97 |
</tr>
|
98 |
<tr>
|
99 |
<td>MMLU-PRO (5-shot)</td>
|
100 |
<td>24.9</td>
|
101 |
+
<td><b>31.99</b></td>
|
102 |
+
<td>26.21</td>
|
103 |
+
<td>28.77</td>
|
104 |
</tr>
|
105 |
<tr>
|
106 |
<td>IFEval</td>
|
107 |
+
<td>12.83</td>
|
108 |
+
<td>27.0</td>
|
109 |
+
<td>22.81</td>
|
110 |
+
<td><b>27.67</b></td>
|
111 |
</tr>
|
112 |
<tr>
|
113 |
<td rowspan="2">Math</td>
|
114 |
<td>GSM8K (5-shot)</td>
|
115 |
+
<td>26.68</td>
|
116 |
+
<td><b>68.99</b></td>
|
117 |
<td>25.7</td>
|
118 |
+
<td>63.91</td>
|
119 |
</tr>
|
120 |
<tr>
|
121 |
<td>MATH Lvl-5 (4-shot)</td>
|
122 |
+
<td>1.39</td>
|
123 |
+
<td>8.43</td>
|
124 |
+
<td>1.73</td>
|
125 |
+
<td><b>9.38</b></td>
|
126 |
</tr>
|
127 |
<tr>
|
128 |
<td rowspan="4">Reasoning</td>
|
129 |
<td>Arc Challenge (25-shot)</td>
|
130 |
+
<td>50.76</td>
|
131 |
+
<td><b>55.54</b></td>
|
132 |
+
<td>50.34</td>
|
133 |
+
<td>54.86</td>
|
134 |
</tr>
|
135 |
<tr>
|
136 |
<td>GPQA (0-shot)</td>
|
137 |
+
<td>27.49</td>
|
138 |
+
<td>27.53</td>
|
139 |
+
<td><b>38.6</b></td>
|
140 |
+
<td>31.15</td>
|
141 |
</tr>
|
142 |
<tr>
|
143 |
<td>MUSR (0-shot)</td>
|
144 |
+
<td>35.24</td>
|
145 |
+
<td><b>43.03</b></td>
|
146 |
+
<td>42.13</td>
|
147 |
<td>37.5</td>
|
148 |
</tr>
|
149 |
<tr>
|
150 |
<td>BBH (3-shot)</td>
|
151 |
+
<td>38.59</td>
|
152 |
+
<td><b>46.12</b></td>
|
153 |
+
<td>40.85</td>
|
154 |
+
<td>44.23</td>
|
155 |
</tr>
|
156 |
<tr>
|
157 |
<td rowspan="4">CommonSense Understanding</td>
|
158 |
<td>PIQA (0-shot)</td>
|
159 |
+
<td>77.42</td>
|
160 |
+
<td><b>78.89</b></td>
|
161 |
+
<td>78.29</td>
|
162 |
+
<td>75.62</td>
|
163 |
</tr>
|
164 |
<tr>
|
165 |
<td>SciQ (0-shot)</td>
|
|
|
170 |
</tr>
|
171 |
<tr>
|
172 |
<td>Winogrande (0-shot)</td>
|
173 |
+
<td><b>69.69</b></td>
|
174 |
+
<td>68.82</td>
|
175 |
+
<td>68.35</td>
|
176 |
+
<td>64.64</td>
|
177 |
</tr>
|
178 |
<tr>
|
179 |
<td>OpenbookQA (0-shot)</td>
|
180 |
<td><b>43.2</b></td>
|
181 |
<td>42.2</td>
|
182 |
+
<td>43.0</td>
|
183 |
<td>39.4</td>
|
184 |
</tr>
|
185 |
</tbody>
|
|
|
194 |
|
195 |
## Citation
|
196 |
If the Falcon3 family of models were helpful to your work, feel free to give us a cite.
|
197 |
+
|
198 |
```
|
199 |
@misc{Falcon3,
|
200 |
title = {The Falcon 3 Family of Open Models},
|
|
|
201 |
author = {Falcon-LLM Team},
|
202 |
month = {December},
|
203 |
year = {2024}
|