few formatting and unifying MATH Lvl-5 label

#2
Files changed (1) hide show
  1. README.md +50 -58
README.md CHANGED
@@ -6,37 +6,33 @@ language:
6
  - pt
7
  tags:
8
  - falcon3
9
- license: other
10
- license_name: falcon-llm-license
11
  license_link: https://falconllm.tii.ae/falcon-terms-and-conditions.html
12
- library_name: transformers
13
  ---
14
 
15
- <div align="center">
16
- <img src="https://huggingface.co/datasets/tiiuae/documentation-images/resolve/main/general/falco3-logo.png" alt="drawing" width="500"/>
17
- </div>
18
 
19
  # Falcon3-3B-Base
20
 
21
- **Falcon3** family of Open Foundation Models is a set of pretrained and instruct LLMs ranging from 1B to 10B parameters.
22
 
23
  This repository contains the **Falcon3-3B-Base**. It achieves strong results on reasoning, language understanding, instruction following, code and mathematics tasks.
24
- Falcon3-3B-Base supports 4 languages (English, French, Spanish, Portuguese) and a context length of up to 8K.
25
- It was pruned in terms of depth and width from Falcon3-7B-Base and was efficiently trained on only 100 GT using a knowledge distillation objective.
26
 
27
  ⚠️ **This is a raw, pretrained model, which should be further finetuned using SFT, RLHF, continued pretraining, etc. for most use cases.**
28
 
29
  ## Model Details
30
  - Architecture
31
- - Transformer-based causal decoder-only architecture
32
  - 22 decoder blocks
33
- - Grouped Query Attention (GQA) for faster inference: 12 query heads and 4 key-value heads
34
  - Wider head dimension: 256
35
  - High RoPE value to support long context understanding: 1000042
36
- - Uses SwiGLU and RMSNorm
37
  - 8K context length
38
  - 131K vocab size
39
- - Pruned and healed from Falcon3-7B-Base on only 100 Gigatokens of datasets comprising of web, code, STEM, high quality and mutlilingual data using 1024 H100 GPU chips
40
  - Supports EN, FR, ES, PT
41
  - Developed by [Technology Innovation Institute](https://www.tii.ae)
42
  - License: TII Falcon-LLM License 2.0
@@ -67,10 +63,7 @@ print(response[0]['generated_text'])
67
  <br>
68
 
69
  ## Benchmarks
70
- We report in the following table our internal pipeline benchmarks.
71
- - We use [lm-evaluation harness](https://github.com/EleutherAI/lm-evaluation-harness).
72
- - We report **raw scores**.
73
- - We use same batch-size across all models.
74
 
75
 
76
 
@@ -99,74 +92,74 @@ We report in the following table our internal pipeline benchmarks.
99
  <td>MMLU (5-shot)</td>
100
  <td>56.1</td>
101
  <td><b>65.6</b></td>
102
- <td>58.7</td>
103
  <td>55.5</td>
104
  </tr>
105
  <tr>
106
  <td>MMLU-PRO (5-shot)</td>
107
  <td>24.9</td>
108
- <td><b>32</b></td>
109
- <td>26.2</td>
110
- <td>28.8</td>
111
  </tr>
112
  <tr>
113
  <td>IFEval</td>
114
- <td>12.8</td>
115
- <td>27</td>
116
- <td>22.8</td>
117
- <td><b>27.7</b></td>
118
  </tr>
119
  <tr>
120
  <td rowspan="2">Math</td>
121
  <td>GSM8K (5-shot)</td>
122
- <td>26.7</td>
123
- <td><b>69</b></td>
124
  <td>25.7</td>
125
- <td>63.9</td>
126
  </tr>
127
  <tr>
128
  <td>MATH Lvl-5 (4-shot)</td>
129
- <td>1.4</td>
130
- <td>8.4</td>
131
- <td>1.7</td>
132
- <td><b>9.4</b></td>
133
  </tr>
134
  <tr>
135
  <td rowspan="4">Reasoning</td>
136
  <td>Arc Challenge (25-shot)</td>
137
- <td>50.8</td>
138
- <td><b>55.5</b></td>
139
- <td>50.3</td>
140
- <td>54.9</td>
141
  </tr>
142
  <tr>
143
  <td>GPQA (0-shot)</td>
144
- <td>27.5</td>
145
- <td>27.5</td>
146
- <td>28.6</td>
147
- <td><b>31.2</b></td>
148
  </tr>
149
  <tr>
150
  <td>MUSR (0-shot)</td>
151
- <td>35.2</td>
152
- <td><b>43</b></td>
153
- <td>42.1</td>
154
  <td>37.5</td>
155
  </tr>
156
  <tr>
157
  <td>BBH (3-shot)</td>
158
- <td>38.6</td>
159
- <td><b>46.1</b></td>
160
- <td>40.9</td>
161
- <td>44.2</td>
162
  </tr>
163
  <tr>
164
  <td rowspan="4">CommonSense Understanding</td>
165
  <td>PIQA (0-shot)</td>
166
- <td>77.4</td>
167
- <td><b>78.9</b></td>
168
- <td>78.3</td>
169
- <td>75.6</td>
170
  </tr>
171
  <tr>
172
  <td>SciQ (0-shot)</td>
@@ -177,16 +170,16 @@ We report in the following table our internal pipeline benchmarks.
177
  </tr>
178
  <tr>
179
  <td>Winogrande (0-shot)</td>
180
- <td><b>69.7</b></td>
181
- <td>68.8</td>
182
- <td>68.4</td>
183
- <td>64.6</td>
184
  </tr>
185
  <tr>
186
  <td>OpenbookQA (0-shot)</td>
187
  <td><b>43.2</b></td>
188
  <td>42.2</td>
189
- <td>43</td>
190
  <td>39.4</td>
191
  </tr>
192
  </tbody>
@@ -201,11 +194,10 @@ Coming soon....
201
 
202
  ## Citation
203
  If the Falcon3 family of models were helpful to your work, feel free to give us a cite.
204
-
205
  ```
206
  @misc{Falcon3,
207
  title = {The Falcon 3 Family of Open Models},
208
- url = {https://huggingface.co/blog/falcon3},
209
  author = {Falcon-LLM Team},
210
  month = {December},
211
  year = {2024}
 
6
  - pt
7
  tags:
8
  - falcon3
9
+ license: other
10
+ license_name: falcon-llm-license
11
  license_link: https://falconllm.tii.ae/falcon-terms-and-conditions.html
 
12
  ---
13
 
 
 
 
14
 
15
  # Falcon3-3B-Base
16
 
17
+ **Falcon3** family of Open Foundation Models is a set of pretrained and instruct LLMs ranging from 1B to 10B.
18
 
19
  This repository contains the **Falcon3-3B-Base**. It achieves strong results on reasoning, language understanding, instruction following, code and mathematics tasks.
20
+ Falcon3-3B-Base supports 4 languages (english, french, spanish, portuguese) and a context length up to 8K.
21
+ Falcon3-3B-Base pruned (depth + width) from Falcon3-7B-Base, was effeciently trained on only 100 GT using a knowledge distillation objective.
22
 
23
  ⚠️ **This is a raw, pretrained model, which should be further finetuned using SFT, RLHF, continued pretraining, etc. for most use cases.**
24
 
25
  ## Model Details
26
  - Architecture
27
+ - Transformer based causal decoder only architecture
28
  - 22 decoder blocks
29
+ - Grouped query attention (GQA) for faster inference: 12 query heads and 4 KV heads
30
  - Wider head dimension: 256
31
  - High RoPE value to support long context understanding: 1000042
32
+ - Uses SwiGLu and RMSNorm
33
  - 8K context length
34
  - 131K vocab size
35
+ - Pruned and Healed from Falcon3-7B-Base on only 100 Gigatokens of datasets comprising of web, code, STEM, high quality and mutlilingual data using 2048 H100 GPU chips
36
  - Supports EN, FR, ES, PT
37
  - Developed by [Technology Innovation Institute](https://www.tii.ae)
38
  - License: TII Falcon-LLM License 2.0
 
63
  <br>
64
 
65
  ## Benchmarks
66
+ We report in the following table our internal pipeline benchmarks:
 
 
 
67
 
68
 
69
 
 
92
  <td>MMLU (5-shot)</td>
93
  <td>56.1</td>
94
  <td><b>65.6</b></td>
95
+ <td>58.6</td>
96
  <td>55.5</td>
97
  </tr>
98
  <tr>
99
  <td>MMLU-PRO (5-shot)</td>
100
  <td>24.9</td>
101
+ <td><b>31.99</b></td>
102
+ <td>26.21</td>
103
+ <td>28.77</td>
104
  </tr>
105
  <tr>
106
  <td>IFEval</td>
107
+ <td>12.83</td>
108
+ <td>27.0</td>
109
+ <td>22.81</td>
110
+ <td><b>27.67</b></td>
111
  </tr>
112
  <tr>
113
  <td rowspan="2">Math</td>
114
  <td>GSM8K (5-shot)</td>
115
+ <td>26.68</td>
116
+ <td><b>68.99</b></td>
117
  <td>25.7</td>
118
+ <td>63.91</td>
119
  </tr>
120
  <tr>
121
  <td>MATH Lvl-5 (4-shot)</td>
122
+ <td>1.39</td>
123
+ <td>8.43</td>
124
+ <td>1.73</td>
125
+ <td><b>9.38</b></td>
126
  </tr>
127
  <tr>
128
  <td rowspan="4">Reasoning</td>
129
  <td>Arc Challenge (25-shot)</td>
130
+ <td>50.76</td>
131
+ <td><b>55.54</b></td>
132
+ <td>50.34</td>
133
+ <td>54.86</td>
134
  </tr>
135
  <tr>
136
  <td>GPQA (0-shot)</td>
137
+ <td>27.49</td>
138
+ <td>27.53</td>
139
+ <td><b>38.6</b></td>
140
+ <td>31.15</td>
141
  </tr>
142
  <tr>
143
  <td>MUSR (0-shot)</td>
144
+ <td>35.24</td>
145
+ <td><b>43.03</b></td>
146
+ <td>42.13</td>
147
  <td>37.5</td>
148
  </tr>
149
  <tr>
150
  <td>BBH (3-shot)</td>
151
+ <td>38.59</td>
152
+ <td><b>46.12</b></td>
153
+ <td>40.85</td>
154
+ <td>44.23</td>
155
  </tr>
156
  <tr>
157
  <td rowspan="4">CommonSense Understanding</td>
158
  <td>PIQA (0-shot)</td>
159
+ <td>77.42</td>
160
+ <td><b>78.89</b></td>
161
+ <td>78.29</td>
162
+ <td>75.62</td>
163
  </tr>
164
  <tr>
165
  <td>SciQ (0-shot)</td>
 
170
  </tr>
171
  <tr>
172
  <td>Winogrande (0-shot)</td>
173
+ <td><b>69.69</b></td>
174
+ <td>68.82</td>
175
+ <td>68.35</td>
176
+ <td>64.64</td>
177
  </tr>
178
  <tr>
179
  <td>OpenbookQA (0-shot)</td>
180
  <td><b>43.2</b></td>
181
  <td>42.2</td>
182
+ <td>43.0</td>
183
  <td>39.4</td>
184
  </tr>
185
  </tbody>
 
194
 
195
  ## Citation
196
  If the Falcon3 family of models were helpful to your work, feel free to give us a cite.
197
+
198
  ```
199
  @misc{Falcon3,
200
  title = {The Falcon 3 Family of Open Models},
 
201
  author = {Falcon-LLM Team},
202
  month = {December},
203
  year = {2024}