Update README.md
#6
by
DhiyaEddine
- opened
README.md
CHANGED
@@ -4,36 +4,26 @@ language:
|
|
4 |
tags:
|
5 |
- falcon3
|
6 |
- falcon3_mamba
|
7 |
-
- falcon_mamba
|
8 |
base_model:
|
9 |
- tiiuae/Falcon3-Mamba-7B-Base
|
10 |
-
license: other
|
11 |
-
license_name: falcon-llm-license
|
12 |
-
license_link: https://falconllm.tii.ae/falcon-terms-and-conditions.html
|
13 |
-
library_name: transformers
|
14 |
---
|
15 |
|
16 |
-
<div align="center">
|
17 |
-
<img src="https://huggingface.co/datasets/tiiuae/documentation-images/resolve/main/falcon_mamba/falcon-mamba-logo.png" alt="drawing" width="500"/>
|
18 |
-
</div>
|
19 |
-
|
20 |
-
|
21 |
# Falcon3-Mamba-7B-Instruct
|
22 |
|
23 |
**Falcon3** family of Open Foundation Models is a set of pretrained and instruct LLMs ranging from 1B to 10B.
|
24 |
|
25 |
-
This repository contains the **Falcon3-Mamba-7B-Instruct**. It achieves,
|
26 |
-
Falcon3-Mamba-7B-Instruct supports a context length up to 32K and
|
27 |
|
28 |
## Model Details
|
29 |
-
- Architecture
|
30 |
- Mamba1 based causal decoder only architecture trained on a causal language modeling task (i.e., predict the next token).
|
31 |
- 64 decoder blocks
|
32 |
- width: 4096
|
33 |
- state_size: 16
|
34 |
- 32k context length
|
35 |
- 65k vocab size
|
36 |
-
-
|
37 |
- Postrained on 1.2 million samples of STEM, conversations, code, and safety.
|
38 |
- Developed by [Technology Innovation Institute](https://www.tii.ae)
|
39 |
- License: TII Falcon-LLM License 2.0
|
@@ -89,7 +79,7 @@ print(response)
|
|
89 |
<br>
|
90 |
|
91 |
# Benchmarks
|
92 |
-
We report in the following table our internal pipeline benchmarks
|
93 |
|
94 |
<table border="1" style="width: 100%; text-align: center; border-collapse: collapse;">
|
95 |
<colgroup>
|
@@ -98,6 +88,7 @@ We report in the following table our internal pipeline benchmarks. For the bench
|
|
98 |
<col style="width: 7%;">
|
99 |
<col style="width: 7%;">
|
100 |
<col style="width: 7%;">
|
|
|
101 |
<col style="background-color: rgba(80, 15, 213, 0.5); width: 7%;">
|
102 |
</colgroup>
|
103 |
<thead>
|
@@ -106,6 +97,7 @@ We report in the following table our internal pipeline benchmarks. For the bench
|
|
106 |
<th>Benchmark</th>
|
107 |
<th>Zamba2-7B-instruct</th>
|
108 |
<th>Jamba-1.5-Mini</th>
|
|
|
109 |
<th>Llama-3.1-8B-Instruct</th>
|
110 |
<th>Falcon3-Mamba-7B-Instruct</th>
|
111 |
</tr>
|
@@ -114,105 +106,122 @@ We report in the following table our internal pipeline benchmarks. For the bench
|
|
114 |
<tr>
|
115 |
<td rowspan="3">General</td>
|
116 |
<td>MMLU (5-shot)</td>
|
117 |
-
<td
|
118 |
-
<td>68.7
|
119 |
-
<td
|
120 |
-
<td>
|
|
|
121 |
</tr>
|
122 |
<tr>
|
123 |
-
<td>MMLU-PRO (5-shot)
|
124 |
-
<td>32.4
|
125 |
-
<td>31.6
|
126 |
-
<td>
|
127 |
-
<td>
|
|
|
128 |
</tr>
|
129 |
<tr>
|
130 |
<td>IFEval</td>
|
131 |
-
<td>69.9
|
132 |
-
<td>65.7
|
133 |
-
<td>
|
134 |
-
<td>
|
|
|
135 |
</tr>
|
136 |
<tr>
|
137 |
<td rowspan="2">Math</td>
|
138 |
<td>GSM8K (5-shot)</td>
|
139 |
-
<td
|
140 |
-
<td>74.9
|
141 |
-
<td
|
142 |
-
<td>
|
|
|
143 |
</tr>
|
144 |
<tr>
|
145 |
<td>MATH Lvl-5 (4-shot)</td>
|
146 |
-
<td
|
147 |
-
<td>6.9
|
148 |
-
<td>
|
149 |
-
<td>
|
|
|
150 |
</tr>
|
151 |
<tr>
|
152 |
<td rowspan="4">Reasoning</td>
|
153 |
<td>Arc Challenge (25-shot)</td>
|
154 |
-
<td
|
155 |
-
<td>54.3
|
156 |
-
<td
|
157 |
-
<td>
|
|
|
158 |
</tr>
|
159 |
<tr>
|
160 |
-
<td>GPQA (0-shot)
|
161 |
-
<td>10.3
|
162 |
-
<td>11.1
|
163 |
-
<td>6.
|
164 |
-
<td>
|
|
|
165 |
</tr>
|
166 |
<tr>
|
167 |
-
<td>MUSR (0-shot)
|
168 |
-
<td>8.2
|
169 |
-
<td>12.2
|
170 |
-
<td>
|
171 |
-
<td>
|
|
|
172 |
</tr>
|
173 |
<tr>
|
174 |
-
<td>BBH (3-shot)
|
175 |
-
<td>33.3
|
176 |
-
<td>35.3
|
177 |
-
<td>
|
178 |
-
<td>
|
|
|
179 |
</tr>
|
180 |
<tr>
|
181 |
<td rowspan="4">CommonSense Understanding</td>
|
182 |
<td>PIQA (0-shot)</td>
|
183 |
-
<td
|
184 |
-
<td>82.3
|
185 |
-
<td
|
186 |
-
<td>
|
|
|
187 |
</tr>
|
188 |
<tr>
|
189 |
<td>SciQ (0-shot)</td>
|
190 |
-
<td
|
191 |
-
<td>94.9
|
192 |
-
<td
|
193 |
-
<td>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
</tr>
|
195 |
<tr>
|
196 |
<td>OpenbookQA (0-shot)</td>
|
197 |
-
<td
|
198 |
-
<td>
|
199 |
-
<td
|
200 |
-
<td>
|
|
|
201 |
</tr>
|
202 |
</tbody>
|
203 |
</table>
|
204 |
|
205 |
-
## Useful links
|
206 |
-
- View our [release blogpost](https://huggingface.co/blog/falcon3).
|
207 |
-
- Feel free to join [our discord server](https://discord.gg/fwXpMyGc) if you have any questions or to interact with our researchers and developers.
|
208 |
|
209 |
-
|
210 |
-
If
|
211 |
|
212 |
```
|
213 |
@misc{Falcon3,
|
214 |
-
title = {The Falcon 3
|
215 |
-
author = {
|
216 |
month = {December},
|
217 |
year = {2024}
|
218 |
}
|
|
|
4 |
tags:
|
5 |
- falcon3
|
6 |
- falcon3_mamba
|
|
|
7 |
base_model:
|
8 |
- tiiuae/Falcon3-Mamba-7B-Base
|
|
|
|
|
|
|
|
|
9 |
---
|
10 |
|
|
|
|
|
|
|
|
|
|
|
11 |
# Falcon3-Mamba-7B-Instruct
|
12 |
|
13 |
**Falcon3** family of Open Foundation Models is a set of pretrained and instruct LLMs ranging from 1B to 10B.
|
14 |
|
15 |
+
This repository contains the **Falcon3-Mamba-7B-Instruct**. It achieves ,compared to similar SSM-based models of the same size, state of art results (at release's time) on reasoning, language understanding, instruction following, code and mathematics tasks.
|
16 |
+
Falcon3-Mamba-7B-Instruct supports a context length up to 32K and 1 language (english).
|
17 |
|
18 |
## Model Details
|
19 |
+
- Architecture(same as Falcon-Mamba-7b)
|
20 |
- Mamba1 based causal decoder only architecture trained on a causal language modeling task (i.e., predict the next token).
|
21 |
- 64 decoder blocks
|
22 |
- width: 4096
|
23 |
- state_size: 16
|
24 |
- 32k context length
|
25 |
- 65k vocab size
|
26 |
+
- Pretrained on 7 Teratokens of datasets comprising of web, code, STEM and high quality data using 2048 H100 GPU chips
|
27 |
- Postrained on 1.2 million samples of STEM, conversations, code, and safety.
|
28 |
- Developed by [Technology Innovation Institute](https://www.tii.ae)
|
29 |
- License: TII Falcon-LLM License 2.0
|
|
|
79 |
<br>
|
80 |
|
81 |
# Benchmarks
|
82 |
+
We report in the following table our internal pipeline benchmarks:
|
83 |
|
84 |
<table border="1" style="width: 100%; text-align: center; border-collapse: collapse;">
|
85 |
<colgroup>
|
|
|
88 |
<col style="width: 7%;">
|
89 |
<col style="width: 7%;">
|
90 |
<col style="width: 7%;">
|
91 |
+
<col style="width: 7%;">
|
92 |
<col style="background-color: rgba(80, 15, 213, 0.5); width: 7%;">
|
93 |
</colgroup>
|
94 |
<thead>
|
|
|
97 |
<th>Benchmark</th>
|
98 |
<th>Zamba2-7B-instruct</th>
|
99 |
<th>Jamba-1.5-Mini</th>
|
100 |
+
<th>Qwen2-7B-Instruct</th>
|
101 |
<th>Llama-3.1-8B-Instruct</th>
|
102 |
<th>Falcon3-Mamba-7B-Instruct</th>
|
103 |
</tr>
|
|
|
106 |
<tr>
|
107 |
<td rowspan="3">General</td>
|
108 |
<td>MMLU (5-shot)</td>
|
109 |
+
<td>-</td>
|
110 |
+
<td>68.7%</td>
|
111 |
+
<td>-</td>
|
112 |
+
<td>55.9%</td>
|
113 |
+
<td>-</td>
|
114 |
</tr>
|
115 |
<tr>
|
116 |
+
<td>MMLU-PRO (5-shot)</td>
|
117 |
+
<td>32.4%</td>
|
118 |
+
<td>31.6%</td>
|
119 |
+
<td>31.6%</td>
|
120 |
+
<td>21.8%</td>
|
121 |
+
<td>26.3%</td>
|
122 |
</tr>
|
123 |
<tr>
|
124 |
<td>IFEval</td>
|
125 |
+
<td>69.9%</td>
|
126 |
+
<td>65.7%</td>
|
127 |
+
<td>56.8%</td>
|
128 |
+
<td>78.8%</td>
|
129 |
+
<td>71.7%</td>
|
130 |
</tr>
|
131 |
<tr>
|
132 |
<td rowspan="2">Math</td>
|
133 |
<td>GSM8K (5-shot)</td>
|
134 |
+
<td>-</td>
|
135 |
+
<td>74.9%</td>
|
136 |
+
<td>-</td>
|
137 |
+
<td>19.2%</td>
|
138 |
+
<td>-</td>
|
139 |
</tr>
|
140 |
<tr>
|
141 |
<td>MATH Lvl-5 (4-shot)</td>
|
142 |
+
<td>-</td>
|
143 |
+
<td>6.9%</td>
|
144 |
+
<td>9.44%</td>
|
145 |
+
<td>10.4%</td>
|
146 |
+
<td>27.3%</td>
|
147 |
</tr>
|
148 |
<tr>
|
149 |
<td rowspan="4">Reasoning</td>
|
150 |
<td>Arc Challenge (25-shot)</td>
|
151 |
+
<td>-</td>
|
152 |
+
<td>54.3%</td>
|
153 |
+
<td>-</td>
|
154 |
+
<td>46.6%</td>
|
155 |
+
<td>-</td>
|
156 |
</tr>
|
157 |
<tr>
|
158 |
+
<td>GPQA (0-shot)</td>
|
159 |
+
<td>10.3%</td>
|
160 |
+
<td>11.1%</td>
|
161 |
+
<td>6.4%</td>
|
162 |
+
<td>33.6%</td>
|
163 |
+
<td>7.2%</td>
|
164 |
</tr>
|
165 |
<tr>
|
166 |
+
<td>MUSR (0-shot)</td>
|
167 |
+
<td>8.2%</td>
|
168 |
+
<td>12.2%</td>
|
169 |
+
<td>7.4%</td>
|
170 |
+
<td>38.6%</td>
|
171 |
+
<td>8.3%</td>
|
172 |
</tr>
|
173 |
<tr>
|
174 |
+
<td>BBH (3-shot)</td>
|
175 |
+
<td>33.3%</td>
|
176 |
+
<td>35.3%</td>
|
177 |
+
<td>37.8%</td>
|
178 |
+
<td>43.7%</td>
|
179 |
+
<td>25.2%</td>
|
180 |
</tr>
|
181 |
<tr>
|
182 |
<td rowspan="4">CommonSense Understanding</td>
|
183 |
<td>PIQA (0-shot)</td>
|
184 |
+
<td>-</td>
|
185 |
+
<td>82.3%</td>
|
186 |
+
<td>-</td>
|
187 |
+
<td>78.9%</td>
|
188 |
+
<td>-</td>
|
189 |
</tr>
|
190 |
<tr>
|
191 |
<td>SciQ (0-shot)</td>
|
192 |
+
<td>-</td>
|
193 |
+
<td>94.9%</td>
|
194 |
+
<td>-</td>
|
195 |
+
<td>80.2%</td>
|
196 |
+
<td>-</td>
|
197 |
+
</tr>
|
198 |
+
<tr>
|
199 |
+
<td>Winogrande (0-shot)</td>
|
200 |
+
<td>-</td>
|
201 |
+
<td>64.5%</td>
|
202 |
+
<td>-</td>
|
203 |
+
<td>-</td>
|
204 |
+
<td>-</td>
|
205 |
</tr>
|
206 |
<tr>
|
207 |
<td>OpenbookQA (0-shot)</td>
|
208 |
+
<td>-</td>
|
209 |
+
<td>34.6%</td>
|
210 |
+
<td>-</td>
|
211 |
+
<td>46.2%</td>
|
212 |
+
<td>-</td>
|
213 |
</tr>
|
214 |
</tbody>
|
215 |
</table>
|
216 |
|
|
|
|
|
|
|
217 |
|
218 |
+
# Citation
|
219 |
+
If Falcon3 family were helpful to your work, feel free to give us a cite.
|
220 |
|
221 |
```
|
222 |
@misc{Falcon3,
|
223 |
+
title = {The Falcon 3 family of Open Models},
|
224 |
+
author = {TII Team},
|
225 |
month = {December},
|
226 |
year = {2024}
|
227 |
}
|