|
--- |
|
license: mit |
|
--- |
|
# cvx-coder |
|
|
|
## Introduction |
|
|
|
cvx-coder is a phi-3 model finetuned on a dataset of [CVX](https://cvxr.com/cvx) docs, codes, and forum conversations. Its aimed to improve the CVX code ability and QA ability of LLMs. |
|
|
|
## Quickstart |
|
Run the following: |
|
```python |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline |
|
m_path="tim1900/cvx-coder" |
|
model = AutoModelForCausalLM.from_pretrained( |
|
m_path, |
|
device_map="cuda", |
|
torch_dtype="auto", |
|
trust_remote_code=True, |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(m_path) |
|
pipe = pipeline( |
|
"text-generation", |
|
model=model, |
|
tokenizer=tokenizer, |
|
) |
|
generation_args = { |
|
"max_new_tokens": 2000, |
|
"return_full_text": False, |
|
"temperature": 0, |
|
"do_sample": False, |
|
} |
|
content='''my problem is not convex, can i use cvx? if not, what should i do, be specific.''' |
|
messages = [ |
|
{"role": "user", "content": content}, |
|
] |
|
output = pipe(messages, **generation_args) |
|
print(output[0]['generated_text']) |
|
``` |