|
--- |
|
license: mit |
|
|
|
language: |
|
- en |
|
pipeline_tag: text-generation |
|
tags: |
|
- nlp |
|
- code |
|
inference: |
|
parameters: |
|
temperature: 0.0 |
|
widget: |
|
- messages: |
|
- role: user |
|
content: How to express n-th root of the determinant of a semidefinite matrix in cvx? |
|
--- |
|
# cvx-coder |
|
[Github](https://github.com/jackfsuia/cvx-coder) | [Modelscope](https://www.modelscope.cn/models/tommy1235/cvx-coder) |
|
|
|
## Introduction |
|
|
|
cvx-coder aims to improve the [Matlab CVX](https://cvxr.com/cvx) code ability and QA ability of LLMs. It is a [phi-3 model](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) finetuned on a dataset consisting of CVX docs, codes, [forum conversations](https://ask.cvxr.com/) ( my cleaned version of them is at [CVX-forum-conversations](https://huggingface.co/datasets/tim1900/CVX-forum-conversations)). |
|
|
|
## Quickstart |
|
For one quick test, run the following: |
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline |
|
m_path="tim1900/cvx-coder" |
|
model = AutoModelForCausalLM.from_pretrained( |
|
m_path, |
|
device_map="auto", |
|
torch_dtype="auto", |
|
trust_remote_code=True, |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(m_path) |
|
pipe = pipeline( |
|
"text-generation", |
|
model=model, |
|
tokenizer=tokenizer, |
|
) |
|
generation_args = { |
|
"max_new_tokens": 2000, |
|
"return_full_text": False, |
|
"temperature": 0, |
|
"do_sample": False, |
|
} |
|
content='''my problem is not convex, can i use cvx? if not, what should i do, be specific.''' |
|
messages = [ |
|
{"role": "user", "content": content}, |
|
] |
|
output = pipe(messages, **generation_args) |
|
print(output[0]['generated_text']) |
|
``` |
|
For the **chat mode** in web, run the following: |
|
```python |
|
import gradio as gr |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline |
|
m_path="tim1900/cvx-coder" |
|
model = AutoModelForCausalLM.from_pretrained( |
|
m_path, |
|
device_map="auto", |
|
torch_dtype="auto", |
|
trust_remote_code=True, |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(m_path) |
|
pipe = pipeline( |
|
"text-generation", |
|
model=model, |
|
tokenizer=tokenizer, |
|
) |
|
generation_args = { |
|
"max_new_tokens": 2000, |
|
"return_full_text": False, |
|
"temperature": 0, |
|
"do_sample": False, |
|
} |
|
|
|
def assistant_talk(message, history): |
|
message=[ |
|
{"role": "user", "content": message}, |
|
] |
|
temp=[] |
|
for i in history: |
|
temp+=[{"role": "user", "content": i[0]},{"role": "assistant", "content": i[1]}] |
|
|
|
messages =temp + message |
|
|
|
output = pipe(messages, **generation_args) |
|
return output[0]['generated_text'] |
|
gr.ChatInterface(assistant_talk).launch() |
|
``` |