Model card for darknet53.c2ns_in1k
A DarkNet image classification model. Trained on ImageNet-1k in timm
using recipe template described below.
Recipe details:
- Based on ResNet Strikes Back
C
recipes w/o repeat-aug and stronger mixup - SGD (w/ Nesterov) optimizer and AGC (adaptive gradient clipping)
- No stochastic depth used in this
ns
variation of the recipe - Cosine LR schedule with warmup
Model Details
- Model Type: Image classification / feature backbone
- Model Stats:
- Params (M): 41.6
- GMACs: 9.3
- Activations (M): 12.4
- Image size: train = 256 x 256, test = 288 x 288
- Papers:
- YOLOv3: An Incremental Improvement: https://arxiv.org/abs/1804.02767
- ResNet strikes back: An improved training procedure in timm: https://arxiv.org/abs/2110.00476
- Original: https://github.com/huggingface/pytorch-image-models
Model Usage
Image Classification
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model('darknet53.c2ns_in1k', pretrained=True)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
Feature Map Extraction
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'darknet53.c2ns_in1k',
pretrained=True,
features_only=True,
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
for o in output:
# print shape of each feature map in output
# e.g.:
# torch.Size([1, 32, 256, 256])
# torch.Size([1, 64, 128, 128])
# torch.Size([1, 128, 64, 64])
# torch.Size([1, 256, 32, 32])
# torch.Size([1, 512, 16, 16])
# torch.Size([1, 1024, 8, 8])
print(o.shape)
Image Embeddings
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'darknet53.c2ns_in1k',
pretrained=True,
num_classes=0, # remove classifier nn.Linear
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
# or equivalently (without needing to set num_classes=0)
output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 1024, 8, 8) shaped tensor
output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor
Model Comparison
Explore the dataset and runtime metrics of this model in timm model results.
Citation
@article{Redmon2018YOLOv3AI,
title={YOLOv3: An Incremental Improvement},
author={Joseph Redmon and Ali Farhadi},
journal={ArXiv},
year={2018},
volume={abs/1804.02767}
}
@inproceedings{wightman2021resnet,
title={ResNet strikes back: An improved training procedure in timm},
author={Wightman, Ross and Touvron, Hugo and Jegou, Herve},
booktitle={NeurIPS 2021 Workshop on ImageNet: Past, Present, and Future}
}
@misc{rw2019timm,
author = {Ross Wightman},
title = {PyTorch Image Models},
year = {2019},
publisher = {GitHub},
journal = {GitHub repository},
doi = {10.5281/zenodo.4414861},
howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}
- Downloads last month
- 485
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.