timm
/

Image Classification
timm
PyTorch
Safetensors

Model card for efficientformerv2_l.snap_dist_in1k

A EfficientFormer-V2 image classification model. Pretrained with distillation on ImageNet-1k.

Model Details

Model Usage

Image Classification

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(
    urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'))

model = timm.create_model('efficientformerv2_l.snap_dist_in1k', pretrained=True)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)

Image Embeddings

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(
    urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'))

model = timm.create_model(
    'efficientformerv2_l.snap_dist_in1k',
    pretrained=True,
    num_classes=0,  # remove classifier nn.Linear
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # output is (batch_size, num_features) shaped tensor

# or equivalently (without needing to set num_classes=0)

output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled (ie.e a (batch_size, num_features, H, W) tensor

output = model.forward_head(output, pre_logits=True)
# output is (batch_size, num_features) tensor

Feature Map Extraction

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(
    urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'))

model = timm.create_model(
    'efficientformerv2_l.snap_dist_in1k',
    pretrained=True,
    features_only=True,
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

for o in output:
    # print shape of each feature map in output
    # e.g. for efficientformerv2_l: 
    # torch.Size([2, 40, 56, 56])
    # torch.Size([2, 80, 28, 28])
    # torch.Size([2, 192, 14, 14])
    # torch.Size([2, 384, 7, 7])
    print(o.shape)

Model Comparison

model top1 top5 param_count img_size
efficientformerv2_l.snap_dist_in1k 83.628 96.54 26.32 224
efficientformer_l7.snap_dist_in1k 83.368 96.534 82.23 224
efficientformer_l3.snap_dist_in1k 82.572 96.24 31.41 224
efficientformerv2_s2.snap_dist_in1k 82.128 95.902 12.71 224
efficientformer_l1.snap_dist_in1k 80.496 94.984 12.29 224
efficientformerv2_s1.snap_dist_in1k 79.698 94.698 6.19 224
efficientformerv2_s0.snap_dist_in1k 76.026 92.77 3.6 224

Citation

@article{li2022rethinking,
  title={Rethinking Vision Transformers for MobileNet Size and Speed},
  author={Li, Yanyu and Hu, Ju and Wen, Yang and Evangelidis, Georgios and Salahi, Kamyar and Wang, Yanzhi and Tulyakov, Sergey and Ren, Jian},
  journal={arXiv preprint arXiv:2212.08059},
  year={2022}
}
@misc{rw2019timm,
  author = {Ross Wightman},
  title = {PyTorch Image Models},
  year = {2019},
  publisher = {GitHub},
  journal = {GitHub repository},
  doi = {10.5281/zenodo.4414861},
  howpublished = {\url{https://github.com/rwightman/pytorch-image-models}}
}
Downloads last month
689
Safetensors
Model size
26.5M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train timm/efficientformerv2_l.snap_dist_in1k