timm
/

Image Classification
timm
PyTorch
Safetensors

Model card for rexnetr_200.sw_in12k

A ReXNet-R image classification model. The R variant of the architecture is timm specific and rounds channels (modulus 8 or 16) to prevent performance issues w/ NVIDIA Tensor Cores. Pretrained on ImageNet-12k by Ross Wightman in timm.

Model Details

Model Usage

Image Classification

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model('rexnetr_200.sw_in12k', pretrained=True)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)

Feature Map Extraction

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'rexnetr_200.sw_in12k',
    pretrained=True,
    features_only=True,
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

for o in output:
    # print shape of each feature map in output
    # e.g.:
    #  torch.Size([1, 32, 112, 112])
    #  torch.Size([1, 80, 56, 56])
    #  torch.Size([1, 120, 28, 28])
    #  torch.Size([1, 256, 14, 14])
    #  torch.Size([1, 368, 7, 7])

    print(o.shape)

Image Embeddings

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'rexnetr_200.sw_in12k',
    pretrained=True,
    num_classes=0,  # remove classifier nn.Linear
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # output is (batch_size, num_features) shaped tensor

# or equivalently (without needing to set num_classes=0)

output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 2560, 7, 7) shaped tensor

output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor

Model Comparison

Explore the dataset and runtime metrics of this model in timm model results."

model top1 top5 param_count img_size crop_pct
rexnetr_300.sw_in12k_ft_in1k 84.53 97.252 34.81 288 1.0
rexnetr_200.sw_in12k_ft_in1k 83.164 96.648 16.52 288 1.0
rexnet_300.nav_in1k 82.772 96.232 34.71 224 0.875
rexnet_200.nav_in1k 81.652 95.668 16.37 224 0.875
rexnet_150.nav_in1k 80.308 95.174 9.73 224 0.875
rexnet_130.nav_in1k 79.478 94.68 7.56 224 0.875
rexnet_100.nav_in1k 77.832 93.886 4.8 224 0.875

Citation

@misc{han2021rethinking,
  title={Rethinking Channel Dimensions for Efficient Model Design}, 
  author={Dongyoon Han and Sangdoo Yun and Byeongho Heo and YoungJoon Yoo},
  year={2021},
  eprint={2007.00992},
  archivePrefix={arXiv},
  primaryClass={cs.CV}
}  
@misc{rw2019timm,
  author = {Ross Wightman},
  title = {PyTorch Image Models},
  year = {2019},
  publisher = {GitHub},
  journal = {GitHub repository},
  doi = {10.5281/zenodo.4414861},
  howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}
Downloads last month
129
Safetensors
Model size
44.3M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Collection including timm/rexnetr_200.sw_in12k