BeagleCatMunin2 / README.md
timpal0l's picture
Upload folder using huggingface_hub
98b8669 verified
|
raw
history blame
1.79 kB
---
tags:
- merge
- mergekit
- lazymergekit
- bineric/NorskGPT-Mistral-7b
- timpal0l/BeagleCatMunin
- RJuro/munin-neuralbeagle-7b
base_model:
- bineric/NorskGPT-Mistral-7b
- timpal0l/BeagleCatMunin
- RJuro/munin-neuralbeagle-7b
---
# BeagleCatMunin2
BeagleCatMunin2 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [bineric/NorskGPT-Mistral-7b](https://huggingface.co/bineric/NorskGPT-Mistral-7b)
* [timpal0l/BeagleCatMunin](https://huggingface.co/timpal0l/BeagleCatMunin)
* [RJuro/munin-neuralbeagle-7b](https://huggingface.co/RJuro/munin-neuralbeagle-7b)
## 🧩 Configuration
```yaml
models:
- model: bineric/NorskGPT-Mistral-7b
parameters:
density: 0.53
weight: 0.33
- model: timpal0l/BeagleCatMunin
parameters:
density: 0.53
weight: 0.33
- model: RJuro/munin-neuralbeagle-7b
parameters:
density: 0.53
weight: 0.33
merge_method: dare_ties
base_model: RJuro/munin-neuralbeagle-7b
parameters:
int8_mask: true
dtype: bfloat16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "timpal0l/BeagleCatMunin2"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```