This tiny model is for debugging. It is randomly initialized with the config adapted from microsoft/phi-4.

Example usage:

from transformers import pipeline
model_id = "tiny-random/phi-4"
pipe = pipeline(
    "text-generation", model=model_id, device="cuda",
    trust_remote_code=True, max_new_tokens=20,
)
print(pipe("Hello World!"))

Codes to create this repo:

import torch

from transformers import (
    AutoConfig,
    AutoModelForCausalLM,
    AutoTokenizer,
    GenerationConfig,
    pipeline,
    set_seed,
)

source_model_id = "microsoft/phi-4"
save_folder = "/tmp/tiny-random/phi-4"

tokenizer = AutoTokenizer.from_pretrained(
    source_model_id, trust_remote_code=True,
)
tokenizer.save_pretrained(save_folder)

config = AutoConfig.from_pretrained(
    source_model_id, trust_remote_code=True,
)
config.hidden_size = 16
config.intermediate_size = 32
config.num_attention_heads = 2
config.num_hidden_layers = 2
config.num_key_value_heads = 1
model = AutoModelForCausalLM.from_config(
    config,
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
)
model.generation_config = GenerationConfig.from_pretrained(
    source_model_id, trust_remote_code=True,
)
set_seed(42)
with torch.no_grad():
    for name, p in sorted(model.named_parameters()):
        torch.nn.init.normal_(p, 0, 0.5)
        print(name, p.shape)
model.save_pretrained(save_folder)
Downloads last month
0
Safetensors
Model size
3.22M params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.