lilt-en-funsd

This model is a fine-tuned version of SCUT-DLVCLab/lilt-roberta-en-base on the funsd-layoutlmv3 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6459
  • Answer: {'precision': 0.8831942789034565, 'recall': 0.9069767441860465, 'f1': 0.894927536231884, 'number': 817}
  • Header: {'precision': 0.6213592233009708, 'recall': 0.5378151260504201, 'f1': 0.5765765765765765, 'number': 119}
  • Question: {'precision': 0.8998178506375227, 'recall': 0.9173630454967502, 'f1': 0.9085057471264367, 'number': 1077}
  • Overall Precision: 0.8789
  • Overall Recall: 0.8907
  • Overall F1: 0.8848
  • Overall Accuracy: 0.8068

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
0.4201 10.53 200 0.8003 {'precision': 0.8321995464852607, 'recall': 0.8984088127294981, 'f1': 0.8640376692171865, 'number': 817} {'precision': 0.5714285714285714, 'recall': 0.5714285714285714, 'f1': 0.5714285714285714, 'number': 119} {'precision': 0.8651079136690647, 'recall': 0.89322191272052, 'f1': 0.8789401553220649, 'number': 1077} 0.8348 0.8763 0.8551 0.8104
0.0376 21.05 400 1.3158 {'precision': 0.8395904436860068, 'recall': 0.9033047735618115, 'f1': 0.8702830188679245, 'number': 817} {'precision': 0.4785714285714286, 'recall': 0.5630252100840336, 'f1': 0.5173745173745175, 'number': 119} {'precision': 0.8887814313346228, 'recall': 0.8532961931290622, 'f1': 0.8706774040738986, 'number': 1077} 0.8397 0.8564 0.8480 0.7934
0.0119 31.58 600 1.4791 {'precision': 0.8752941176470588, 'recall': 0.9106487148102815, 'f1': 0.8926214757048591, 'number': 817} {'precision': 0.5401459854014599, 'recall': 0.6218487394957983, 'f1': 0.578125, 'number': 119} {'precision': 0.8818681318681318, 'recall': 0.8941504178272981, 'f1': 0.8879668049792531, 'number': 1077} 0.8567 0.8847 0.8705 0.7961
0.0061 42.11 800 1.5605 {'precision': 0.8617886178861789, 'recall': 0.9082007343941249, 'f1': 0.8843861740166865, 'number': 817} {'precision': 0.5963302752293578, 'recall': 0.5462184873949579, 'f1': 0.5701754385964912, 'number': 119} {'precision': 0.8747763864042933, 'recall': 0.9080779944289693, 'f1': 0.8911161731207289, 'number': 1077} 0.8549 0.8867 0.8705 0.7965
0.0026 52.63 1000 1.5172 {'precision': 0.8596491228070176, 'recall': 0.8996328029375765, 'f1': 0.8791866028708135, 'number': 817} {'precision': 0.7176470588235294, 'recall': 0.5126050420168067, 'f1': 0.5980392156862744, 'number': 119} {'precision': 0.8737864077669902, 'recall': 0.9192200557103064, 'f1': 0.8959276018099548, 'number': 1077} 0.8616 0.8872 0.8742 0.8014
0.0019 63.16 1200 1.6132 {'precision': 0.8735224586288416, 'recall': 0.9045287637698899, 'f1': 0.888755261575466, 'number': 817} {'precision': 0.6460176991150443, 'recall': 0.6134453781512605, 'f1': 0.6293103448275863, 'number': 119} {'precision': 0.881508078994614, 'recall': 0.9117920148560817, 'f1': 0.8963943404837974, 'number': 1077} 0.8654 0.8912 0.8781 0.8040
0.0012 73.68 1400 1.6459 {'precision': 0.8831942789034565, 'recall': 0.9069767441860465, 'f1': 0.894927536231884, 'number': 817} {'precision': 0.6213592233009708, 'recall': 0.5378151260504201, 'f1': 0.5765765765765765, 'number': 119} {'precision': 0.8998178506375227, 'recall': 0.9173630454967502, 'f1': 0.9085057471264367, 'number': 1077} 0.8789 0.8907 0.8848 0.8068
0.0005 84.21 1600 1.5619 {'precision': 0.8602771362586605, 'recall': 0.9118727050183598, 'f1': 0.8853238265002972, 'number': 817} {'precision': 0.6631578947368421, 'recall': 0.5294117647058824, 'f1': 0.5887850467289719, 'number': 119} {'precision': 0.8944494995450409, 'recall': 0.9127205199628597, 'f1': 0.9034926470588234, 'number': 1077} 0.8694 0.8897 0.8795 0.8155
0.0003 94.74 1800 1.6571 {'precision': 0.8649592549476135, 'recall': 0.9094247246022031, 'f1': 0.886634844868735, 'number': 817} {'precision': 0.6391752577319587, 'recall': 0.5210084033613446, 'f1': 0.5740740740740741, 'number': 119} {'precision': 0.8971792538671519, 'recall': 0.9155060352831941, 'f1': 0.90625, 'number': 1077} 0.8715 0.8897 0.8805 0.8098
0.0003 105.26 2000 1.6731 {'precision': 0.8672875436554133, 'recall': 0.9118727050183598, 'f1': 0.8890214797136038, 'number': 817} {'precision': 0.62, 'recall': 0.5210084033613446, 'f1': 0.5662100456621004, 'number': 119} {'precision': 0.9008264462809917, 'recall': 0.9108635097493036, 'f1': 0.9058171745152355, 'number': 1077} 0.8730 0.8882 0.8806 0.8071

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.13.0+cu117
  • Datasets 2.7.1
  • Tokenizers 0.13.2
Downloads last month
13
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.