BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5 on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("tmmazen/bge-base-financial-matryoshka")
# Run inference
sentences = [
'iconstituents its principal constituent is an alkaloid, tamarixin,along with traces of its aglocone, tamarixetin. theplant also contains a high level of tannin (ellagicand gallic) and quercetol (methyllic esther).',
'What are the chemical constituents of Tamarix gallica L.?',
'How is Myrtus communis L. used in modern and traditional medicine?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_768
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.1529 |
cosine_accuracy@3 | 0.2302 |
cosine_accuracy@5 | 0.2965 |
cosine_accuracy@10 | 0.3831 |
cosine_precision@1 | 0.1529 |
cosine_precision@3 | 0.0767 |
cosine_precision@5 | 0.0593 |
cosine_precision@10 | 0.0383 |
cosine_recall@1 | 0.1529 |
cosine_recall@3 | 0.2302 |
cosine_recall@5 | 0.2965 |
cosine_recall@10 | 0.3831 |
cosine_ndcg@10 | 0.2525 |
cosine_mrr@10 | 0.2125 |
cosine_map@100 | 0.2203 |
Information Retrieval
- Dataset:
dim_512
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.151 |
cosine_accuracy@3 | 0.2357 |
cosine_accuracy@5 | 0.2947 |
cosine_accuracy@10 | 0.3886 |
cosine_precision@1 | 0.151 |
cosine_precision@3 | 0.0786 |
cosine_precision@5 | 0.0589 |
cosine_precision@10 | 0.0389 |
cosine_recall@1 | 0.151 |
cosine_recall@3 | 0.2357 |
cosine_recall@5 | 0.2947 |
cosine_recall@10 | 0.3886 |
cosine_ndcg@10 | 0.2543 |
cosine_mrr@10 | 0.2132 |
cosine_map@100 | 0.2197 |
Information Retrieval
- Dataset:
dim_256
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.1436 |
cosine_accuracy@3 | 0.2247 |
cosine_accuracy@5 | 0.2855 |
cosine_accuracy@10 | 0.3573 |
cosine_precision@1 | 0.1436 |
cosine_precision@3 | 0.0749 |
cosine_precision@5 | 0.0571 |
cosine_precision@10 | 0.0357 |
cosine_recall@1 | 0.1436 |
cosine_recall@3 | 0.2247 |
cosine_recall@5 | 0.2855 |
cosine_recall@10 | 0.3573 |
cosine_ndcg@10 | 0.2393 |
cosine_mrr@10 | 0.2029 |
cosine_map@100 | 0.2112 |
Information Retrieval
- Dataset:
dim_128
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.1326 |
cosine_accuracy@3 | 0.2339 |
cosine_accuracy@5 | 0.2744 |
cosine_accuracy@10 | 0.3462 |
cosine_precision@1 | 0.1326 |
cosine_precision@3 | 0.078 |
cosine_precision@5 | 0.0549 |
cosine_precision@10 | 0.0346 |
cosine_recall@1 | 0.1326 |
cosine_recall@3 | 0.2339 |
cosine_recall@5 | 0.2744 |
cosine_recall@10 | 0.3462 |
cosine_ndcg@10 | 0.2299 |
cosine_mrr@10 | 0.194 |
cosine_map@100 | 0.2021 |
Information Retrieval
- Dataset:
dim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.1142 |
cosine_accuracy@3 | 0.1878 |
cosine_accuracy@5 | 0.2431 |
cosine_accuracy@10 | 0.3204 |
cosine_precision@1 | 0.1142 |
cosine_precision@3 | 0.0626 |
cosine_precision@5 | 0.0486 |
cosine_precision@10 | 0.032 |
cosine_recall@1 | 0.1142 |
cosine_recall@3 | 0.1878 |
cosine_recall@5 | 0.2431 |
cosine_recall@10 | 0.3204 |
cosine_ndcg@10 | 0.2047 |
cosine_mrr@10 | 0.1691 |
cosine_map@100 | 0.1777 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 4,887 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 3 tokens
- mean: 102.23 tokens
- max: 512 tokens
- min: 9 tokens
- mean: 20.63 tokens
- max: 42 tokens
- Samples:
positive anchor The reported side effects of solidification were those with allergy to the plants of the asteraceae family (formerly the family of compounds: chamomile, dandelion, echinacea, armoise, etc.), to which the solidification belongs. Sometimes, solidification can cause heartburn.
What are the side effects and risks of overdose of the European Solidage plant?
rhumes crâniens, névralgie, problèmes respiratoires, sinusite
À quelles conditions ou fins Pulicaria incisa (Lam.) DC. est-il utilisé?
La mélisse (Melissa officinalis) est originaire d’Asie Mineure (Turquie et pourtour méditerranéen) où Théophraste et Hippocrate en vantaient déjà la capacité à calmer les maux de ventre. Elle doit son nom au mot grec « melissa » désignant l’abeille (la mélisse est aussi appelée « piment des abeilles »). Elle est traditionnellement utilisée pour ses propriétés apaisantes sur le système nerveux et le système digestif. Son usage a été popularisé par des préparations élaborées dans des monastères (l’Eau de Mélisse des Carmes, par exemple). Cultivée en régions tempérées, la mélisse est une plante de la famille des labiées, tout comme la menthe. Ses feuilles sont récoltées de juin à septembre, puis séchées. La poudre de mélisse est obtenue par broyage des feuilles, dont on peut aussi extraire l’huile essentielle, à usage externe. Des teintures et des extraits liquides sont également obtenus par extraction dans l’alcool. Les autres usages traditionnels de la mélisse
Les décoctions de mélisse sont parfois utilisées en frictions pour soulager les migraines ou les rhumatismes, et en bains en cas de nervosité, d’agitation et de règles douloureuses.Quelle est l'origine et quels sont les usages de la plante Mélisse?
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 16per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 1e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1fp16
: Trueload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonelearning_rate
: 1e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
---|---|---|---|---|---|---|---|
0.5229 | 10 | 7.9606 | - | - | - | - | - |
1.0458 | 20 | 4.6998 | - | - | - | - | - |
1.5686 | 30 | 0.3577 | - | - | - | - | - |
1.7778 | 34 | - | 0.1845 | 0.2027 | 0.2041 | 0.1558 | 0.2045 |
1.2680 | 40 | 2.4714 | - | - | - | - | - |
1.7908 | 50 | 4.4309 | - | - | - | - | - |
2.3137 | 60 | 0.7847 | - | - | - | - | - |
2.7843 | 69 | - | 0.2028 | 0.2114 | 0.2197 | 0.1779 | 0.2206 |
2.0131 | 70 | 0.1189 | - | - | - | - | - |
2.3268 | 76 | - | 0.2021 | 0.2112 | 0.2197 | 0.1777 | 0.2203 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.0
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.33.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 4
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for tmmazen/bge-base-financial-matryoshka
Base model
BAAI/bge-base-en-v1.5Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.153
- Cosine Accuracy@3 on dim 768self-reported0.230
- Cosine Accuracy@5 on dim 768self-reported0.297
- Cosine Accuracy@10 on dim 768self-reported0.383
- Cosine Precision@1 on dim 768self-reported0.153
- Cosine Precision@3 on dim 768self-reported0.077
- Cosine Precision@5 on dim 768self-reported0.059
- Cosine Precision@10 on dim 768self-reported0.038
- Cosine Recall@1 on dim 768self-reported0.153
- Cosine Recall@3 on dim 768self-reported0.230