Wav2vec_1

This model is a fine-tuned version of jonatasgrosman/wav2vec2-large-xlsr-53-japanese on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0459
  • Wer: 0.2213
  • Cer: 0.1608

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 8

Training results

Training Loss Epoch Step Validation Loss Wer Cer
3.4904 1.0 120 3.4430 0.9970 0.9991
1.1939 2.0 240 1.0064 0.8270 0.6265
0.7726 3.0 360 0.6257 0.8198 0.5705
0.5502 4.0 480 0.4148 0.5910 0.3415
0.4152 5.0 600 0.2439 0.4167 0.2182
0.3159 6.0 720 0.1359 0.3084 0.1762
0.2425 7.0 840 0.0737 0.2523 0.1509
0.1921 8.0 960 0.0459 0.2213 0.1608

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.14.6
  • Tokenizers 0.15.0
Downloads last month
5
Safetensors
Model size
315M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for tndklab/Wav2vec_1

Finetuned
(6)
this model