mt5-small-sport / README.md
toanduc's picture
End of training
596ffda verified
|
raw
history blame
3.1 kB
metadata
license: apache-2.0
base_model: google/mt5-small
tags:
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: mt5-small-sport
    results: []

mt5-small-sport

This model is a fine-tuned version of google/mt5-small on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2444
  • Rouge1: 22.6291
  • Rouge2: 9.9519
  • Rougel: 18.0362
  • Rougelsum: 19.4768
  • Gen Len: 19.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 16

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
2.3085 1.0 2897 1.6680 21.9624 8.3028 16.8626 18.4892 19.0
1.9601 2.0 5794 1.5129 22.355 8.0976 17.1001 18.4518 19.0
1.8149 3.0 8691 1.4461 21.7553 8.2693 16.8813 18.1753 19.0
1.6939 4.0 11588 1.3859 22.1485 8.5444 17.1957 18.5641 19.0
1.6661 5.0 14485 1.3600 22.1464 8.5701 17.1911 18.5834 19.0
1.5776 6.0 17382 1.3366 22.188 8.6102 17.2114 18.6171 19.0
1.5635 7.0 20279 1.3036 22.2216 8.8053 17.3255 18.7127 19.0
1.5286 8.0 23176 1.2969 22.6098 9.4618 17.7417 19.2344 19.0
1.5034 9.0 26073 1.2774 22.7211 9.8323 17.9709 19.456 19.0
1.4808 10.0 28970 1.2697 22.6057 9.778 17.9176 19.3593 19.0
1.468 11.0 31867 1.2612 22.6437 9.8167 17.9253 19.3505 19.0
1.458 12.0 34764 1.2527 22.744 10.0172 18.0459 19.5324 19.0
1.4494 13.0 37661 1.2491 22.687 9.9128 17.9941 19.4752 19.0
1.4286 14.0 40558 1.2490 22.6855 9.9731 18.0414 19.5128 19.0
1.4448 15.0 43455 1.2436 22.6476 9.9704 18.0385 19.498 19.0
1.4324 16.0 46352 1.2444 22.6291 9.9519 18.0362 19.4768 19.0

Framework versions

  • Transformers 4.38.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2