nordic-ner / README.md
tollefj's picture
Update README.md
a563caa verified
---
language: en
license: cc-by-sa-4.0
library_name: span-marker
tags:
- span-marker
- token-classification
- ner
- named-entity-recognition
- generated_from_span_marker_trainer
base_model: FacebookAI/xlm-roberta-base
datasets:
- norne
metrics:
- precision
- recall
- f1
widget:
- text: Av Boethius hand förelåg De institutione arithmetica (" Om aritmetikens grunder
") i två böcker.
- text: Hans hovedmotstander var lederen for opposisjonspartiet Movement for Democratic
Change, Morgan Tsvangirai.
- text: Roddarn blir proffs efter OS.
- text: Han blev dog diskvalificeret for at have trådt på banelinjen, og bronzemedaljen
gik i stedet til landsmanden Walter Dix.
- text: Stillingen var på dette tidspunkt 1-1, men Almunias redning banede vejen for
et sejrsmål af danske Nicklas Bendtner.
pipeline_tag: token-classification
model-index:
- name: SpanMarker with FacebookAI/xlm-roberta-base on norne
results:
- task:
type: token-classification
name: Named Entity Recognition
dataset:
name: norne
type: norne
split: test
metrics:
- type: f1
value: 0.9181825779313034
name: F1
- type: precision
value: 0.9217689611454993
name: Precision
- type: recall
value: 0.9146239940801036
name: Recall
---
# SpanMarker with xlm-roberta-base
Trained on various nordic lang. datasets: see https://huggingface.co/datasets/tollefj/nordic-ner
This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model trained on the [norne](https://huggingface.co/datasets/norne) dataset that can be used for Named Entity Recognition. This SpanMarker model uses [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) as the underlying encoder.
## Model Details
### Model Description
- **Model Type:** SpanMarker
- **Encoder:** [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base)
- **Maximum Sequence Length:** 256 tokens
- **Maximum Entity Length:** 8 words
- **Training Dataset:** [norne](https://huggingface.co/datasets/norne)
- **Language:** en
- **License:** cc-by-sa-4.0
### Model Sources
- **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER)
- **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf)
### Model Labels
| Label | Examples |
|:------|:-------------------------------------------------------------|
| LOC | "Gran", "Leicestershire", "Den tyske antarktisekspedisjonen" |
| MISC | "socialdemokratiske", "nationalist", "Living Legend" |
| ORG | "Stabæk", "Samlaget", "Marillion" |
| PER | "Fish", "Dmitrij Medvedev", "Guru Ardjan Dev" |
## Evaluation
### Metrics
| Label | Precision | Recall | F1 |
|:--------|:----------|:-------|:-------|
| **all** | 0.9218 | 0.9146 | 0.9182 |
| LOC | 0.9284 | 0.9433 | 0.9358 |
| MISC | 0.6515 | 0.6047 | 0.6272 |
| ORG | 0.8951 | 0.8547 | 0.8745 |
| PER | 0.9513 | 0.9526 | 0.9520 |
## Uses
### Direct Use for Inference
```python
from span_marker import SpanMarkerModel
# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("span_marker_model_id")
# Run inference
entities = model.predict("Roddarn blir proffs efter OS.")
```
### Downstream Use
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
```python
from span_marker import SpanMarkerModel, Trainer
# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("span_marker_model_id")
# Specify a Dataset with "tokens" and "ner_tag" columns
dataset = load_dataset("conll2003") # For example CoNLL2003
# Initialize a Trainer using the pretrained model & dataset
trainer = Trainer(
model=model,
train_dataset=dataset["train"],
eval_dataset=dataset["validation"],
)
trainer.train()
trainer.save_model("span_marker_model_id-finetuned")
```
</details>
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:----------------------|:----|:--------|:----|
| Sentence length | 1 | 12.8175 | 331 |
| Entities per sentence | 0 | 1.0055 | 54 |
### Training Hyperparameters
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
### Training Results
| Epoch | Step | Validation Loss | Validation Precision | Validation Recall | Validation F1 | Validation Accuracy |
|:------:|:-----:|:---------------:|:--------------------:|:-----------------:|:-------------:|:-------------------:|
| 0.5711 | 3000 | 0.0146 | 0.8650 | 0.8725 | 0.8687 | 0.9722 |
| 1.1422 | 6000 | 0.0123 | 0.8994 | 0.8920 | 0.8957 | 0.9778 |
| 1.7133 | 9000 | 0.0101 | 0.9184 | 0.8984 | 0.9083 | 0.9805 |
| 2.2844 | 12000 | 0.0101 | 0.9198 | 0.9110 | 0.9154 | 0.9818 |
| 2.8555 | 15000 | 0.0089 | 0.9245 | 0.9150 | 0.9197 | 0.9830 |
### Framework Versions
- Python: 3.12.2
- SpanMarker: 1.5.0
- Transformers: 4.38.2
- PyTorch: 2.2.1+cu121
- Datasets: 2.18.0
- Tokenizers: 0.15.2
## Citation
### BibTeX
```
@software{Aarsen_SpanMarker,
author = {Aarsen, Tom},
license = {Apache-2.0},
title = {{SpanMarker for Named Entity Recognition}},
url = {https://github.com/tomaarsen/SpanMarkerNER}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->