|
--- |
|
language: |
|
- en |
|
library_name: sentence-transformers |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- loss:MatryoshkaLoss |
|
- loss:MultipleNegativesRankingLoss |
|
base_model: distilbert/distilroberta-base |
|
metrics: |
|
- pearson_cosine |
|
- spearman_cosine |
|
- pearson_manhattan |
|
- spearman_manhattan |
|
- pearson_euclidean |
|
- spearman_euclidean |
|
- pearson_dot |
|
- spearman_dot |
|
- pearson_max |
|
- spearman_max |
|
widget: |
|
- source_sentence: The gate is yellow. |
|
sentences: |
|
- A yellow dog is playing in the snow. |
|
- A turtle walks over the ground. |
|
- Three men are on stage playing guitars. |
|
- source_sentence: A woman is reading. |
|
sentences: |
|
- A woman is writing something. |
|
- A tiger walks around aimlessly. |
|
- Gunmen 'kill 10 tourists' in Kashmir |
|
- source_sentence: A man jumping rope |
|
sentences: |
|
- A man is climbing a rope. |
|
- Bombings kill 19 people in Iraq |
|
- Kittens are eating from dishes. |
|
- source_sentence: A baby is laughing. |
|
sentences: |
|
- A baby is crawling happily. |
|
- Kittens are eating from dishes. |
|
- SFG meeting reviews situation in Mali |
|
- source_sentence: A man shoots a man. |
|
sentences: |
|
- A man is shooting off guns. |
|
- A man is erasing a chalk board. |
|
- A girl is riding a bicycle. |
|
pipeline_tag: sentence-similarity |
|
co2_eq_emissions: |
|
emissions: 134.46101750442273 |
|
energy_consumed: 0.34592314293320514 |
|
source: codecarbon |
|
training_type: fine-tuning |
|
on_cloud: false |
|
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K |
|
ram_total_size: 31.777088165283203 |
|
hours_used: 1.296 |
|
hardware_used: 1 x NVIDIA GeForce RTX 3090 |
|
model-index: |
|
- name: SentenceTransformer based on distilbert/distilroberta-base |
|
results: |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts dev 768 |
|
type: sts-dev-768 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8481251400932781 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.851870210632031 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.8393267568646925 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.8384807951588668 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.8409860761844343 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.8402437232149903 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.778375740024104 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.7779671330832745 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.8481251400932781 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.851870210632031 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts dev 512 |
|
type: sts-dev-512 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8481027005283404 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8523762836460506 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.8386304289845581 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.8377488866945335 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.8402060724091132 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.8394674780683281 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.7711669414347555 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.7713442697629354 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.8481027005283404 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.8523762836460506 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts dev 256 |
|
type: sts-dev-256 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.842129976172463 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8488334736505414 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.8313278330554295 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.8315716535622544 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.8333448222091957 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.8335338271135746 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.7445817504026263 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.7450058498333884 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.842129976172463 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.8488334736505414 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts dev 128 |
|
type: sts-dev-128 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8346971467711455 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8445473333837453 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.8240728025222037 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.8248062249521573 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.8254381823447683 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.8261820268848477 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.7083986436033697 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.7093343189476312 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.8346971467711455 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.8445473333837453 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts dev 64 |
|
type: sts-dev-64 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8201235619233855 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8352180907883887 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.8032422421113089 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.8047180797117756 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.8059536263441476 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.8072309964597537 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.6360301824635421 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.6388601952951507 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.8201235619233855 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.8352180907883887 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 768 |
|
type: sts-test-768 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8262197279185375 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8297611922199533 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.8103738584802076 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.8032653500693283 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.8113711464219397 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.8047844488402207 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.7351063083543349 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.7222898603318773 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.8262197279185375 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.8297611922199533 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 512 |
|
type: sts-test-512 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8265289700873992 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8303420710627304 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.8092042518460232 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.8021561300791633 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.8099517575676378 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.8034311442407586 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.7239156858292818 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.7141021600172974 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.8265289700873992 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.8303420710627304 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 256 |
|
type: sts-test-256 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8247713863827557 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8304669772286988 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.8012313573943666 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.7951476656544464 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.8028104839960224 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.7974260171623634 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.7011271518071694 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.6946104528279369 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.8247713863827557 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.8304669772286988 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 128 |
|
type: sts-test-128 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8205553018873636 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8283987535951244 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.7931877193499666 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.7878356187942884 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.7946730313407452 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.7891423743206649 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.6617612604436709 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.658567255717814 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.8205553018873636 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.8283987535951244 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 64 |
|
type: sts-test-64 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8118818737650724 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8241392189948019 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.7761319753952881 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.7738169467058665 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.7777045912119006 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.7745630850628562 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.5934162536230442 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.5884207612393454 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.8118818737650724 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.8241392189948019 |
|
name: Spearman Max |
|
--- |
|
|
|
# SentenceTransformer based on distilbert/distilroberta-base |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base) on the [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base) <!-- at revision fb53ab8802853c8e4fbdbcd0529f21fc6f459b2b --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 768 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
- **Training Dataset:** |
|
- [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) |
|
- **Language:** en |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("tomaarsen/distilroberta-base-nli-matryoshka-v3") |
|
# Run inference |
|
sentences = [ |
|
'A man shoots a man.', |
|
'A man is shooting off guns.', |
|
'A man is erasing a chalk board.', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-dev-768` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.8481 | |
|
| **spearman_cosine** | **0.8519** | |
|
| pearson_manhattan | 0.8393 | |
|
| spearman_manhattan | 0.8385 | |
|
| pearson_euclidean | 0.841 | |
|
| spearman_euclidean | 0.8402 | |
|
| pearson_dot | 0.7784 | |
|
| spearman_dot | 0.778 | |
|
| pearson_max | 0.8481 | |
|
| spearman_max | 0.8519 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-dev-512` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.8481 | |
|
| **spearman_cosine** | **0.8524** | |
|
| pearson_manhattan | 0.8386 | |
|
| spearman_manhattan | 0.8377 | |
|
| pearson_euclidean | 0.8402 | |
|
| spearman_euclidean | 0.8395 | |
|
| pearson_dot | 0.7712 | |
|
| spearman_dot | 0.7713 | |
|
| pearson_max | 0.8481 | |
|
| spearman_max | 0.8524 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-dev-256` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.8421 | |
|
| **spearman_cosine** | **0.8488** | |
|
| pearson_manhattan | 0.8313 | |
|
| spearman_manhattan | 0.8316 | |
|
| pearson_euclidean | 0.8333 | |
|
| spearman_euclidean | 0.8335 | |
|
| pearson_dot | 0.7446 | |
|
| spearman_dot | 0.745 | |
|
| pearson_max | 0.8421 | |
|
| spearman_max | 0.8488 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-dev-128` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.8347 | |
|
| **spearman_cosine** | **0.8445** | |
|
| pearson_manhattan | 0.8241 | |
|
| spearman_manhattan | 0.8248 | |
|
| pearson_euclidean | 0.8254 | |
|
| spearman_euclidean | 0.8262 | |
|
| pearson_dot | 0.7084 | |
|
| spearman_dot | 0.7093 | |
|
| pearson_max | 0.8347 | |
|
| spearman_max | 0.8445 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-dev-64` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.8201 | |
|
| **spearman_cosine** | **0.8352** | |
|
| pearson_manhattan | 0.8032 | |
|
| spearman_manhattan | 0.8047 | |
|
| pearson_euclidean | 0.806 | |
|
| spearman_euclidean | 0.8072 | |
|
| pearson_dot | 0.636 | |
|
| spearman_dot | 0.6389 | |
|
| pearson_max | 0.8201 | |
|
| spearman_max | 0.8352 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-768` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.8262 | |
|
| **spearman_cosine** | **0.8298** | |
|
| pearson_manhattan | 0.8104 | |
|
| spearman_manhattan | 0.8033 | |
|
| pearson_euclidean | 0.8114 | |
|
| spearman_euclidean | 0.8048 | |
|
| pearson_dot | 0.7351 | |
|
| spearman_dot | 0.7223 | |
|
| pearson_max | 0.8262 | |
|
| spearman_max | 0.8298 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-512` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.8265 | |
|
| **spearman_cosine** | **0.8303** | |
|
| pearson_manhattan | 0.8092 | |
|
| spearman_manhattan | 0.8022 | |
|
| pearson_euclidean | 0.81 | |
|
| spearman_euclidean | 0.8034 | |
|
| pearson_dot | 0.7239 | |
|
| spearman_dot | 0.7141 | |
|
| pearson_max | 0.8265 | |
|
| spearman_max | 0.8303 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-256` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.8248 | |
|
| **spearman_cosine** | **0.8305** | |
|
| pearson_manhattan | 0.8012 | |
|
| spearman_manhattan | 0.7951 | |
|
| pearson_euclidean | 0.8028 | |
|
| spearman_euclidean | 0.7974 | |
|
| pearson_dot | 0.7011 | |
|
| spearman_dot | 0.6946 | |
|
| pearson_max | 0.8248 | |
|
| spearman_max | 0.8305 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-128` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.8206 | |
|
| **spearman_cosine** | **0.8284** | |
|
| pearson_manhattan | 0.7932 | |
|
| spearman_manhattan | 0.7878 | |
|
| pearson_euclidean | 0.7947 | |
|
| spearman_euclidean | 0.7891 | |
|
| pearson_dot | 0.6618 | |
|
| spearman_dot | 0.6586 | |
|
| pearson_max | 0.8206 | |
|
| spearman_max | 0.8284 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-64` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.8119 | |
|
| **spearman_cosine** | **0.8241** | |
|
| pearson_manhattan | 0.7761 | |
|
| spearman_manhattan | 0.7738 | |
|
| pearson_euclidean | 0.7777 | |
|
| spearman_euclidean | 0.7746 | |
|
| pearson_dot | 0.5934 | |
|
| spearman_dot | 0.5884 | |
|
| pearson_max | 0.8119 | |
|
| spearman_max | 0.8241 | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### sentence-transformers/all-nli |
|
|
|
* Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [65dd388](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/65dd38867b600f42241d2066ba1a35fbd097fcfe) |
|
* Size: 557,850 training samples |
|
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | anchor | positive | negative | |
|
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| |
|
| type | string | string | string | |
|
| details | <ul><li>min: 7 tokens</li><li>mean: 10.38 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.8 tokens</li><li>max: 39 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 13.4 tokens</li><li>max: 50 tokens</li></ul> | |
|
* Samples: |
|
| anchor | positive | negative | |
|
|:---------------------------------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------------| |
|
| <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>A person is at a diner, ordering an omelette.</code> | |
|
| <code>Children smiling and waving at camera</code> | <code>There are children present</code> | <code>The kids are frowning</code> | |
|
| <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>The boy does a skateboarding trick.</code> | <code>The boy skates down the sidewalk.</code> | |
|
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/losses.html#matryoshkaloss) with these parameters: |
|
```json |
|
{ |
|
"loss": "MultipleNegativesRankingLoss", |
|
"matryoshka_dims": [ |
|
768, |
|
512, |
|
256, |
|
128, |
|
64 |
|
], |
|
"matryoshka_weights": [ |
|
1, |
|
1, |
|
1, |
|
1, |
|
1 |
|
], |
|
"n_dims_per_step": -1 |
|
} |
|
``` |
|
|
|
### Evaluation Dataset |
|
|
|
#### sentence-transformers/stsb |
|
|
|
* Dataset: [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co/datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308) |
|
* Size: 1,500 evaluation samples |
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence1 | sentence2 | score | |
|
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 5 tokens</li><li>mean: 15.0 tokens</li><li>max: 44 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 14.99 tokens</li><li>max: 61 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.47</li><li>max: 1.0</li></ul> | |
|
* Samples: |
|
| sentence1 | sentence2 | score | |
|
|:--------------------------------------------------|:------------------------------------------------------|:------------------| |
|
| <code>A man with a hard hat is dancing.</code> | <code>A man wearing a hard hat is dancing.</code> | <code>1.0</code> | |
|
| <code>A young child is riding a horse.</code> | <code>A child is riding a horse.</code> | <code>0.95</code> | |
|
| <code>A man is feeding a mouse to a snake.</code> | <code>The man is feeding a mouse to the snake.</code> | <code>1.0</code> | |
|
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/losses.html#matryoshkaloss) with these parameters: |
|
```json |
|
{ |
|
"loss": "MultipleNegativesRankingLoss", |
|
"matryoshka_dims": [ |
|
768, |
|
512, |
|
256, |
|
128, |
|
64 |
|
], |
|
"matryoshka_weights": [ |
|
1, |
|
1, |
|
1, |
|
1, |
|
1 |
|
], |
|
"n_dims_per_step": -1 |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 128 |
|
- `per_device_eval_batch_size`: 128 |
|
- `num_train_epochs`: 1 |
|
- `warmup_ratio`: 0.1 |
|
- `fp16`: True |
|
- `batch_sampler`: no_duplicates |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: False |
|
- `per_device_train_batch_size`: 128 |
|
- `per_device_eval_batch_size`: 128 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 1 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: True |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: None |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_sampler`: no_duplicates |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | loss | sts-dev-128_spearman_cosine | sts-dev-256_spearman_cosine | sts-dev-512_spearman_cosine | sts-dev-64_spearman_cosine | sts-dev-768_spearman_cosine | sts-test-128_spearman_cosine | sts-test-256_spearman_cosine | sts-test-512_spearman_cosine | sts-test-64_spearman_cosine | sts-test-768_spearman_cosine | |
|
|:------:|:----:|:-------------:|:-------:|:---------------------------:|:---------------------------:|:---------------------------:|:--------------------------:|:---------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:---------------------------:|:----------------------------:| |
|
| 0.0229 | 100 | 19.9245 | 11.3900 | 0.7772 | 0.7998 | 0.8049 | 0.7902 | 0.7919 | - | - | - | - | - | |
|
| 0.0459 | 200 | 10.6055 | 11.1510 | 0.7809 | 0.7996 | 0.8055 | 0.7954 | 0.7954 | - | - | - | - | - | |
|
| 0.0688 | 300 | 9.6389 | 11.1229 | 0.7836 | 0.8029 | 0.8114 | 0.7923 | 0.8083 | - | - | - | - | - | |
|
| 0.0918 | 400 | 8.6917 | 11.0299 | 0.7976 | 0.8117 | 0.8142 | 0.8002 | 0.8087 | - | - | - | - | - | |
|
| 0.1147 | 500 | 8.3064 | 11.3586 | 0.7895 | 0.8058 | 0.8120 | 0.7978 | 0.8065 | - | - | - | - | - | |
|
| 0.1376 | 600 | 7.8026 | 11.5047 | 0.7876 | 0.8015 | 0.8065 | 0.7934 | 0.8016 | - | - | - | - | - | |
|
| 0.1606 | 700 | 7.9978 | 11.5823 | 0.7944 | 0.8067 | 0.8072 | 0.7994 | 0.8045 | - | - | - | - | - | |
|
| 0.1835 | 800 | 6.9249 | 11.5862 | 0.7945 | 0.8054 | 0.8085 | 0.8012 | 0.8033 | - | - | - | - | - | |
|
| 0.2065 | 900 | 7.1059 | 11.2365 | 0.7895 | 0.8035 | 0.8072 | 0.7956 | 0.8031 | - | - | - | - | - | |
|
| 0.2294 | 1000 | 6.5483 | 11.3770 | 0.7853 | 0.7994 | 0.8039 | 0.7894 | 0.8024 | - | - | - | - | - | |
|
| 0.2524 | 1100 | 6.6684 | 11.5038 | 0.7968 | 0.8087 | 0.8115 | 0.8002 | 0.8065 | - | - | - | - | - | |
|
| 0.2753 | 1200 | 6.4661 | 11.4057 | 0.7980 | 0.8082 | 0.8103 | 0.8057 | 0.8070 | - | - | - | - | - | |
|
| 0.2982 | 1300 | 6.501 | 11.2521 | 0.7974 | 0.8100 | 0.8111 | 0.8025 | 0.8079 | - | - | - | - | - | |
|
| 0.3212 | 1400 | 6.0769 | 11.1458 | 0.7971 | 0.8103 | 0.8124 | 0.7982 | 0.8082 | - | - | - | - | - | |
|
| 0.3441 | 1500 | 6.1919 | 11.3180 | 0.8039 | 0.8129 | 0.8144 | 0.8094 | 0.8098 | - | - | - | - | - | |
|
| 0.3671 | 1600 | 5.8213 | 11.6196 | 0.7924 | 0.8072 | 0.8090 | 0.8003 | 0.8012 | - | - | - | - | - | |
|
| 0.3900 | 1700 | 5.534 | 11.0700 | 0.7979 | 0.8104 | 0.8132 | 0.8028 | 0.8101 | - | - | - | - | - | |
|
| 0.4129 | 1800 | 5.7536 | 11.0916 | 0.7934 | 0.8087 | 0.8149 | 0.8008 | 0.8085 | - | - | - | - | - | |
|
| 0.4359 | 1900 | 5.3778 | 11.2658 | 0.7942 | 0.8084 | 0.8104 | 0.7980 | 0.8049 | - | - | - | - | - | |
|
| 0.4588 | 2000 | 5.4925 | 11.4851 | 0.7932 | 0.8062 | 0.8086 | 0.7932 | 0.8057 | - | - | - | - | - | |
|
| 0.4818 | 2100 | 5.3125 | 11.4833 | 0.7987 | 0.8119 | 0.8154 | 0.8012 | 0.8124 | - | - | - | - | - | |
|
| 0.5047 | 2200 | 5.1914 | 11.2848 | 0.7784 | 0.7971 | 0.8037 | 0.7911 | 0.8004 | - | - | - | - | - | |
|
| 0.5276 | 2300 | 5.2921 | 11.5364 | 0.7698 | 0.7910 | 0.7974 | 0.7839 | 0.7900 | - | - | - | - | - | |
|
| 0.5506 | 2400 | 5.288 | 11.3944 | 0.7873 | 0.8011 | 0.8051 | 0.7877 | 0.8003 | - | - | - | - | - | |
|
| 0.5735 | 2500 | 5.3697 | 11.4532 | 0.7949 | 0.8077 | 0.8111 | 0.7955 | 0.8069 | - | - | - | - | - | |
|
| 0.5965 | 2600 | 5.1521 | 11.2788 | 0.7973 | 0.8095 | 0.8130 | 0.7940 | 0.8088 | - | - | - | - | - | |
|
| 0.6194 | 2700 | 5.2316 | 11.2472 | 0.7948 | 0.8077 | 0.8102 | 0.7939 | 0.8053 | - | - | - | - | - | |
|
| 0.6423 | 2800 | 5.2599 | 11.4171 | 0.7882 | 0.8029 | 0.8065 | 0.7888 | 0.8019 | - | - | - | - | - | |
|
| 0.6653 | 2900 | 5.4052 | 11.4026 | 0.7871 | 0.8005 | 0.8021 | 0.7833 | 0.7985 | - | - | - | - | - | |
|
| 0.6882 | 3000 | 5.3474 | 11.2084 | 0.7895 | 0.8047 | 0.8079 | 0.7928 | 0.8050 | - | - | - | - | - | |
|
| 0.7112 | 3100 | 5.0336 | 11.3999 | 0.8023 | 0.8150 | 0.8182 | 0.8024 | 0.8168 | - | - | - | - | - | |
|
| 0.7341 | 3200 | 5.2496 | 11.2307 | 0.8015 | 0.8137 | 0.8167 | 0.8000 | 0.8140 | - | - | - | - | - | |
|
| 0.7571 | 3300 | 3.8712 | 10.9468 | 0.8396 | 0.8440 | 0.8471 | 0.8284 | 0.8479 | - | - | - | - | - | |
|
| 0.7800 | 3400 | 2.7068 | 10.9292 | 0.8414 | 0.8453 | 0.8489 | 0.8305 | 0.8497 | - | - | - | - | - | |
|
| 0.8029 | 3500 | 2.3418 | 10.8626 | 0.8427 | 0.8467 | 0.8504 | 0.8322 | 0.8504 | - | - | - | - | - | |
|
| 0.8259 | 3600 | 2.2419 | 10.9065 | 0.8421 | 0.8467 | 0.8504 | 0.8320 | 0.8502 | - | - | - | - | - | |
|
| 0.8488 | 3700 | 2.125 | 10.9517 | 0.8424 | 0.8472 | 0.8509 | 0.8324 | 0.8510 | - | - | - | - | - | |
|
| 0.8718 | 3800 | 1.9942 | 11.0142 | 0.8438 | 0.8482 | 0.8519 | 0.8337 | 0.8517 | - | - | - | - | - | |
|
| 0.8947 | 3900 | 2.031 | 10.9662 | 0.8433 | 0.8480 | 0.8519 | 0.8340 | 0.8515 | - | - | - | - | - | |
|
| 0.9176 | 4000 | 1.9734 | 11.0054 | 0.8452 | 0.8495 | 0.8531 | 0.8354 | 0.8528 | - | - | - | - | - | |
|
| 0.9406 | 4100 | 1.9468 | 11.0183 | 0.8447 | 0.8490 | 0.8526 | 0.8348 | 0.8522 | - | - | - | - | - | |
|
| 0.9635 | 4200 | 1.9008 | 11.0154 | 0.8445 | 0.8485 | 0.8521 | 0.8352 | 0.8517 | - | - | - | - | - | |
|
| 0.9865 | 4300 | 1.8511 | 10.9966 | 0.8445 | 0.8488 | 0.8524 | 0.8352 | 0.8519 | - | - | - | - | - | |
|
| 1.0 | 4359 | - | - | - | - | - | - | - | 0.8284 | 0.8305 | 0.8303 | 0.8241 | 0.8298 | |
|
|
|
|
|
### Environmental Impact |
|
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon). |
|
- **Energy Consumed**: 0.346 kWh |
|
- **Carbon Emitted**: 0.134 kg of CO2 |
|
- **Hours Used**: 1.296 hours |
|
|
|
### Training Hardware |
|
- **On Cloud**: No |
|
- **GPU Model**: 1 x NVIDIA GeForce RTX 3090 |
|
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K |
|
- **RAM Size**: 31.78 GB |
|
|
|
### Framework Versions |
|
- Python: 3.11.6 |
|
- Sentence Transformers: 3.0.0.dev0 |
|
- Transformers: 4.41.0.dev0 |
|
- PyTorch: 2.3.0+cu121 |
|
- Accelerate: 0.26.1 |
|
- Datasets: 2.18.0 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MatryoshkaLoss |
|
```bibtex |
|
@misc{kusupati2024matryoshka, |
|
title={Matryoshka Representation Learning}, |
|
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, |
|
year={2024}, |
|
eprint={2205.13147}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.LG} |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |