tomaarsen's picture
tomaarsen HF staff
Add SetFit ABSA model
956b4f6
|
raw
history blame
12 kB
metadata
library_name: setfit
tags:
  - setfit
  - absa
  - sentence-transformers
  - text-classification
  - generated_from_setfit_trainer
metrics:
  - accuracy
widget:
  - text: >-
      is the best French food you will find:It may be a bit packed on weekends,
      but the vibe is good and it is the best French food you will find in the
      area.
  - text: >-
      knew what the specials were.:Whem asked, we had to ask more detailed
      questions so that we knew what the specials were.
  - text: >-
      all out wow dining experience.:Go here for a romantic dinner but not for
      an all out wow dining experience.
  - text: >-
      vibe, the owner is super friendly:Best of all is the warm vibe, the owner
      is super friendly and service is fast.
  - text: >-
      all of the dishes are excellent.:The menu is limited but almost all of the
      dishes are excellent.
pipeline_tag: text-classification
inference: false
co2_eq_emissions:
  emissions: 3.720391621822588
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
  ram_total_size: 31.777088165283203
  hours_used: 0.054
  hardware_used: 1 x NVIDIA GeForce RTX 3090
base_model: sentence-transformers/paraphrase-mpnet-base-v2
model-index:
  - name: SetFit Polarity Model with sentence-transformers/paraphrase-mpnet-base-v2
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: Unknown
          type: unknown
          split: test
        metrics:
          - type: accuracy
            value: 0.7241282339707537
            name: Accuracy

SetFit Polarity Model with sentence-transformers/paraphrase-mpnet-base-v2

This is a SetFit model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification. In particular, this model is in charge of classifying aspect polarities.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

This model was trained within the context of a larger system for ABSA, which looks like so:

  1. Use a spaCy model to select possible aspect span candidates.
  2. Use a SetFit model to filter these possible aspect span candidates.
  3. Use this SetFit model to classify the filtered aspect span candidates.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
negative
  • 'But the staff was so horrible:But the staff was so horrible to us.'
  • ', forgot our toast, left out:They did not have mayonnaise, forgot our toast, left out ingredients (ie cheese in an omelet), below hot temperatures and the bacon was so over cooked it crumbled on the plate when you touched it.'
  • 'did not have mayonnaise, forgot our:They did not have mayonnaise, forgot our toast, left out ingredients (ie cheese in an omelet), below hot temperatures and the bacon was so over cooked it crumbled on the plate when you touched it.'
positive
  • "factor was the food, which was:To be completely fair, the only redeeming factor was the food, which was above average, but couldn't make up for all the other deficiencies of Teodora."
  • "The food is uniformly exceptional:The food is uniformly exceptional, with a very capable kitchen which will proudly whip up whatever you feel like eating, whether it's on the menu or not."
  • "a very capable kitchen which will proudly:The food is uniformly exceptional, with a very capable kitchen which will proudly whip up whatever you feel like eating, whether it's on the menu or not."
neutral
  • "'s on the menu or not.:The food is uniformly exceptional, with a very capable kitchen which will proudly whip up whatever you feel like eating, whether it's on the menu or not."
  • 'to sample both meats).:Our agreed favorite is the orrechiete with sausage and chicken (usually the waiters are kind enough to split the dish in half so you get to sample both meats).'
  • 'to split the dish in half so:Our agreed favorite is the orrechiete with sausage and chicken (usually the waiters are kind enough to split the dish in half so you get to sample both meats).'
conflict
  • 'The food was delicious but:The food was delicious but do not come here on a empty stomach.'
  • "The service varys from day:The service varys from day to day- sometimes they're very nice, and sometimes not."

Evaluation

Metrics

Label Accuracy
all 0.7241

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import AbsaModel

# Download from the 🤗 Hub
model = AbsaModel.from_pretrained(
    "tomaarsen/setfit-absa-paraphrase-mpnet-base-v2-restaurants-aspect",
    "tomaarsen/setfit-absa-paraphrase-mpnet-base-v2-restaurants-polarity",
)
# Run inference
preds = model("The food was great, but the venue is just way too busy.")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 6 21.3594 43
Label Training Sample Count
conflict 2
negative 19
neutral 25
positive 82

Training Hyperparameters

  • batch_size: (16, 2)
  • num_epochs: (1, 16)
  • max_steps: -1
  • sampling_strategy: oversampling
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0018 1 0.221 -
0.0923 50 0.1118 -
0.1845 100 0.0784 -
0.2768 150 0.0024 -
0.3690 200 0.0004 -
0.4613 250 0.0003 -
0.5535 300 0.0006 -
0.6458 350 0.0004 -
0.7380 400 0.0005 -
0.8303 450 0.0001 -
0.9225 500 0.0003 -

Environmental Impact

Carbon emissions were measured using CodeCarbon.

  • Carbon Emitted: 0.004 kg of CO2
  • Hours Used: 0.054 hours

Training Hardware

  • On Cloud: No
  • GPU Model: 1 x NVIDIA GeForce RTX 3090
  • CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
  • RAM Size: 31.78 GB

Framework Versions

  • Python: 3.9.16
  • SetFit: 1.0.0.dev0
  • Sentence Transformers: 2.2.2
  • spaCy: 3.7.2
  • Transformers: 4.29.0
  • PyTorch: 1.13.1+cu117
  • Datasets: 2.15.0
  • Tokenizers: 0.13.3

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}