librarian-bot's picture
Librarian Bot: Add base_model information to model
45cdc8e
|
raw
history blame
1.97 kB
---
language:
- en
license: apache-2.0
library_name: span-marker
tags:
- span-marker
- token-classification
- ner
- named-entity-recognition
datasets:
- conll2003
metrics:
- f1
- recall
- precision
pipeline_tag: token-classification
widget:
- text: Amelia Earhart flew her single engine Lockheed Vega 5B across the Atlantic
to Paris.
example_title: Amelia Earhart
base_model: prajjwal1/bert-tiny
model-index:
- name: SpanMarker w. bert-tiny on CoNLL03 by Tom Aarsen
results:
- task:
type: token-classification
name: Named Entity Recognition
dataset:
name: CoNLL03
type: conll2003
split: test
revision: 01ad4ad271976c5258b9ed9b910469a806ff3288
metrics:
- type: f1
value: 0.8093994778067886
name: F1
- type: precision
value: 0.8546048601184398
name: Precision
- type: recall
value: 0.7687362233651727
name: Recall
---
# SpanMarker for Named Entity Recognition
This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model that can be used for Named Entity Recognition. In particular, this SpanMarker model uses [prajjwal1/bert-tiny](https://huggingface.co/prajjwal1/bert-tiny) as the underlying encoder.
## Note
This model is primarily used for efficient tests on the [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) GitHub repository.
## Usage
To use this model for inference, first install the `span_marker` library:
```bash
pip install span_marker
```
You can then run inference with this model like so:
```python
from span_marker import SpanMarkerModel
# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("tomaarsen/span-marker-bert-tiny-conll03")
# Run inference
entities = model.predict("Amelia Earhart flew her single engine Lockheed Vega 5B across the Atlantic to Paris.")
```
See the [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) repository for documentation and additional information on this library.