File size: 45,314 Bytes
4fcf360 91ef220 6e44bc9 91ef220 d557f58 91ef220 6e44bc9 91ef220 dce2adb 91ef220 ae9243e 91ef220 6e44bc9 91ef220 6e44bc9 91ef220 6e44bc9 91ef220 6e44bc9 91ef220 6e44bc9 91ef220 6e44bc9 91ef220 6e44bc9 91ef220 6e44bc9 91ef220 6e44bc9 91ef220 6e44bc9 91ef220 6e44bc9 91ef220 6e44bc9 91ef220 6e44bc9 91ef220 6e44bc9 91ef220 6e44bc9 91ef220 6e44bc9 91ef220 6e44bc9 91ef220 6e44bc9 91ef220 dce2adb 91ef220 6dc53cb 91ef220 dce2adb 91ef220 3af334f 6dc53cb 91ef220 fbd6377 6dc53cb fbd6377 91ef220 6e44bc9 91ef220 6e44bc9 dce2adb 6e44bc9 91ef220 6e44bc9 91ef220 6dc53cb 6e44bc9 dce2adb 91ef220 dce2adb 6e44bc9 91ef220 6e44bc9 91ef220 6dc53cb 6e44bc9 dce2adb 91ef220 6dc53cb 91ef220 6dc53cb 91ef220 6dc53cb 91ef220 6e44bc9 dce2adb 6e44bc9 91ef220 6e44bc9 dce2adb 6e44bc9 91ef220 6e44bc9 dce2adb 91ef220 dce2adb 6e44bc9 91ef220 6dc53cb 91ef220 6dc53cb 91ef220 45a6c3d 91ef220 4fcf360 6dc53cb 91ef220 fbd6377 91ef220 dce2adb e8fc157 dce2adb 6e44bc9 91ef220 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 |
"""Minimal modeling.py file for HF compatibility and funny zero-shot experiments. Best used for inference, finetuning should work, but is untested with this implementation."""
import torch
import math
from torch import Tensor
from dataclasses import dataclass
from typing import Optional, Union, Any
from .raven_config_minimal import RavenConfig
from transformers.cache_utils import Cache, DynamicCache
###################### Huggingface Glue code I ##################################################################
from transformers import PreTrainedModel, GenerationMixin
from transformers.utils import ModelOutput
from transformers.generation.utils import GenerateDecoderOnlyOutput
import torch.nn.functional as F
from transformers import GenerationConfig
class RavenPreTrainedModel(PreTrainedModel):
config_class = RavenConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["SandwichBlock"]
_skip_keys_device_placement = ["past_key_values"]
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_cache_class = True
_supports_quantized_cache = False
_supports_static_cache = False
def _init_weights(self, module):
if not torch.rand((1,)).is_meta:
print("Random Initialization not implemented.")
@dataclass
class CausalLMOutputRecurrentLatents(ModelOutput):
loss: Optional[torch.Tensor] = None
log_ppl: Optional[torch.Tensor] = None
logits: Optional[torch.Tensor] = None
past_key_values: Optional[Cache] = None
latent_states: Optional[torch.Tensor] = None
hidden_states: Optional[torch.Tensor] = None
attention_maps: Optional[dict[int, torch.Tensor]] = None
stats: Optional[dict] = None
###################### Minimal implementation from here ############################################################
class RMSNorm(torch.nn.Module):
"""Saner dtype handling and slightly better for fusion"""
def __init__(self, dim: int, eps: float = 1e-6):
super().__init__()
self.eps = eps
self.weight = torch.nn.Parameter(torch.ones(dim))
def _norm(self, x):
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x):
with torch.autocast(enabled=False, device_type=x.device.type):
return self._norm(x.float()).type_as(x) * self.weight
def reset_parameters(self) -> None:
torch.nn.init.ones_(self.weight)
class HuginnDynamicCache(DynamicCache):
def __init__(self, lookup_strategy: str = "full") -> None:
super().__init__()
self._seen_tokens = 0
self.key_cache: dict[int, dict[int, torch.Tensor]] = {}
self.value_cache: dict[int, dict[int, torch.Tensor]] = {}
# structure: cache[index_of_layer_or_recurrent_step][index_in_sequence]
# the cache is held uncoalesced because certain recurrent steps may be missing for some sequence ids if using
# per-token adaptive compute. In those cases, the "lookup_strategy" determines how to proceed
# Also, It is critical that the head indices do not overlap with the recurrent iteration indices
self.lookup_strategy = lookup_strategy
def update(
self,
key_states: torch.Tensor,
value_states: torch.Tensor,
step_idx: int,
lookup_strategy: Optional[str] = None,
) -> tuple[torch.Tensor, torch.Tensor]:
lookup_strategy = self.lookup_strategy if lookup_strategy is None else lookup_strategy
if "compress-" in self.lookup_strategy and step_idx > 1: # hardcode for current model!
compression_stage = int(self.lookup_strategy.split("compress-")[1][1:])
if "compress-s" in self.lookup_strategy:
new_step_idx = (step_idx - 2) % compression_stage + 2
else:
new_step_idx = (step_idx - 2) // compression_stage + 2
# @ print(step_idx, new_step_idx, compression_stage)
step_idx = new_step_idx
# Init
if step_idx not in self.key_cache:
self.key_cache[step_idx] = {}
self.value_cache[step_idx] = {}
# Update the number of seen tokens, we assume that step_idx=0 (first prelude) is always hit
if step_idx == 0:
self._seen_tokens += key_states.shape[-2]
# Add entries to cache
for idx, entry in enumerate(key_states.unbind(dim=-2)):
if "compress-" not in self.lookup_strategy:
assert step_idx < 0 or self._seen_tokens - key_states.shape[-2] + idx not in self.key_cache[step_idx]
# print(f"Overwrote cache entry for step_idx {step_idx}") # likely the head
self.key_cache[step_idx][self._seen_tokens - key_states.shape[-2] + idx] = entry
for idx, entry in enumerate(value_states.unbind(dim=-2)):
self.value_cache[step_idx][self._seen_tokens - value_states.shape[-2] + idx] = entry
# Materialize past state based on lookup strategy:
if len(self.key_cache[step_idx]) == self._seen_tokens or self.lookup_strategy == "full":
# All entries are present, materialize cache as normal
return (
torch.stack(list(self.key_cache[step_idx].values()), dim=-2),
torch.stack(list(self.value_cache[step_idx].values()), dim=-2),
)
else: # some entries where not previously computed
# if lookup_strategy.startswith("latest"):
# latest_keys = []
# latest_values = []
# for token_pos in range(self._seen_tokens):
# # Find the latest step that has this token position
# max_step = max((s for s in range(step_idx + 1) if token_pos in self.key_cache[s]), default=None)
# if max_step is None:
# raise ValueError(f"No cache entry found for token position {token_pos}")
# latest_keys.append(self.key_cache[max_step][token_pos])
# latest_values.append(self.value_cache[max_step][token_pos])
# return torch.stack(latest_keys, dim=-2), torch.stack(latest_values, dim=-2)
if lookup_strategy.startswith("latest-m4"):
latest_keys = []
latest_values = []
for token_pos in range(self._seen_tokens):
# For steps >= 2, use modulo 4
if step_idx >= 2:
# Find valid steps for this token position
valid_steps = [s for s in range(step_idx + 1) if token_pos in self.key_cache[s]]
max_step = max([s for s in valid_steps if s >= 2 and s % 4 == step_idx % 4])
else:
max_step = step_idx if token_pos in self.key_cache[step_idx] else 0
if max_step is None:
raise ValueError(f"No cache entry found for token position {token_pos}")
latest_keys.append(self.key_cache[max_step][token_pos])
latest_values.append(self.value_cache[max_step][token_pos])
return torch.stack(latest_keys, dim=-2), torch.stack(latest_values, dim=-2)
elif lookup_strategy.startswith("skip"):
existing_keys = []
existing_values = []
for token_pos in range(self._seen_tokens):
if token_pos in self.key_cache[step_idx]:
existing_keys.append(self.key_cache[step_idx][token_pos])
existing_values.append(self.value_cache[step_idx][token_pos])
return torch.stack(existing_keys, dim=-2), torch.stack(existing_values, dim=-2)
elif lookup_strategy.startswith("randomized"): # sanity check
rand_keys = []
rand_values = []
for token_pos in range(self._seen_tokens):
if step_idx < 2: # For prelude steps
max_step = step_idx if token_pos in self.key_cache[step_idx] else 0
else: # Get all steps from same block position
curr_modulo = (step_idx - 2) % 4 + 2
valid_steps = [
s
for s in range(2, step_idx + 1)
if (s - 2) % 4 + 2 == curr_modulo and token_pos in self.key_cache[s]
]
max_step = valid_steps[torch.randint(len(valid_steps), (1,))]
rand_keys.append(self.key_cache[max_step][token_pos])
rand_values.append(self.value_cache[max_step][token_pos])
return torch.stack(rand_keys, dim=-2), torch.stack(rand_values, dim=-2)
else:
raise ValueError(f"Unknown lookup strategy: {lookup_strategy}")
def reset(self) -> None:
"""Reset the cache state."""
self._seen_tokens = 0
self.key_cache.clear()
self.value_cache.clear()
def get_seq_length(self, step_idx: int = 0) -> int:
return self._seen_tokens
def get_memory_usage(self) -> float:
total_bytes = 0
# For each recurrent step/layer index
for step_idx in self.key_cache:
# Get the sequence cache for this step
key_seq_cache = self.key_cache[step_idx]
for seq_idx in key_seq_cache:
key_tensor = key_seq_cache[seq_idx]
# Add memory for of key tensors, assuming value is the same
total_bytes += key_tensor.nelement() * key_tensor.element_size()
return total_bytes * 2 / (1024 * 1024)
class CausalSelfAttention(torch.nn.Module):
def __init__(self, config: RavenConfig) -> None:
super().__init__()
self.config = config
self.n_head = config.num_attention_heads
self.n_kv_heads = config.num_key_value_heads
self.head_dim = config.n_embd // self.n_head
shape = (self.n_head + 2 * self.n_kv_heads) * self.head_dim
self.chunks = [config.n_embd, self.n_kv_heads * self.head_dim, self.n_kv_heads * self.head_dim]
self.Wqkv = torch.nn.Linear(config.n_embd, shape, bias=False)
if config.qk_bias:
self.qk_bias = torch.nn.Parameter(torch.zeros(2, 1, self.n_head, self.head_dim))
self.proj = torch.nn.Linear(config.n_embd, config.n_embd, bias=False)
def forward(
self,
x: Tensor,
freqs_cis: Tensor,
step_idx: int,
mask: Optional[Tensor] = None,
past_key_values: Optional[Cache] = None,
return_attn: bool = False,
) -> tuple[Tensor, Optional[Tensor]]:
B, S, E = x.shape # batch size, sequence length, embedding dimensionality (n_embd)
q, k, v = self.Wqkv(x).split(self.chunks, dim=2)
q = q.view(B, S, self.n_head, self.head_dim)
k = k.view(B, S, self.n_kv_heads, self.head_dim)
v = v.view(B, S, self.n_kv_heads, self.head_dim)
# bias?
if self.config.qk_bias:
q_bias, k_bias = self.qk_bias.split(1, dim=0)
q, k = (q + q_bias).to(q.dtype), (k + k_bias).to(q.dtype)
# apply rotary
q, k = apply_rotary_emb_complex_like(q, k, freqs_cis=freqs_cis)
q = q.transpose(1, 2) # (B, nh, S, hs)
k = k.transpose(1, 2)
v = v.transpose(1, 2)
if past_key_values is not None:
k, v = past_key_values.update(k, v, step_idx)
if return_attn:
y, attention_map = self.compute_eager_sdpa(q, k, v, attn_mask=mask)
else:
y = torch.nn.functional.scaled_dot_product_attention(
q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=q.shape[2] > 1
)
y = y.transpose(1, 2).reshape(B, S, E).contiguous() # reshape is a view if possible (it mostly is)
return self.proj(y), attention_map if return_attn else None
def compute_eager_sdpa(self, q, k, v, attn_mask):
scale = 1.0 / math.sqrt(self.head_dim)
scores = torch.matmul(q, k.transpose(-2, -1)) * scale
if attn_mask is not None:
scores = scores + attn_mask
if q.shape[2] > 1:
causal_mask = torch.triu(torch.ones(q.shape[2], q.shape[2]), diagonal=1).bool()
scores.masked_fill_(causal_mask.to(scores.device), float("-inf"))
attention_weights = torch.nn.functional.softmax(scores, dim=-1)
y = torch.matmul(attention_weights, v)
return y, attention_weights.max(dim=1)[0]
class GatedMLP(torch.nn.Module):
def __init__(self, config: RavenConfig, in_features: int = 0) -> None:
super().__init__()
in_features = config.n_embd if in_features == 0 else in_features
self.fc = torch.nn.Linear(in_features, config.intermediate_size * 2, bias=False)
self.proj = torch.nn.Linear(config.intermediate_size, config.n_embd, bias=False)
self.nonlin = torch.nn.SiLU()
def forward(self, x: Tensor) -> Tensor:
# modified to single FC layer to improve parallelism
x_fc_1, x_fc_2 = self.fc(x).chunk(2, dim=-1)
x = self.nonlin(x_fc_1) * x_fc_2
return self.proj(x)
class SandwichBlock(torch.nn.Module):
expanded = False
def __init__(self, config: RavenConfig, layer_id: int) -> None:
super().__init__()
self.norm_1 = RMSNorm(config.n_embd, eps=config.norm_eps)
self.attn = CausalSelfAttention(config)
self.norm_2 = RMSNorm(config.n_embd, eps=config.norm_eps)
self.mlp = GatedMLP(config)
self.norm_3 = RMSNorm(config.n_embd, eps=config.norm_eps)
self.norm_4 = RMSNorm(config.n_embd, eps=config.norm_eps)
self.layer_id = layer_id
def forward(
self,
x: Tensor,
freqs_cis: Tensor,
step_idx: int,
mask: Optional[Tensor] = None,
past_key_values: Optional[Cache] = None,
return_attn: bool = False,
) -> tuple[Tensor, Optional[Tensor]]:
attn_out, attn_map = self.attn(self.norm_1(x), freqs_cis, step_idx, mask, past_key_values, return_attn)
x = self.norm_2(attn_out + x)
x = self.norm_4(self.mlp(self.norm_3(x)) + x)
return x, attn_map
class RavenForCausalLM(RavenPreTrainedModel, GenerationMixin):
def __init__(
self,
config: RavenConfig,
) -> None:
super().__init__(config)
self.config = config
# Transformer layers
prelude = torch.nn.ModuleList(SandwichBlock(config, layer_id=i) for i in range(config.n_layers_in_prelude))
adapter = torch.nn.Linear(config.n_embd * 2, config.n_embd, bias=config.bias)
core_block = torch.nn.ModuleList(
SandwichBlock(config, layer_id=i + config.n_layers_in_prelude)
for i in range(config.n_layers_in_recurrent_block)
)
o = config.n_layers_in_prelude + config.n_layers_in_recurrent_block * config.mean_recurrence
coda = torch.nn.ModuleList(SandwichBlock(config, layer_id=i + o) for i in range(config.n_layers_in_coda))
self.transformer = torch.nn.ModuleDict(
dict(
wte=torch.nn.Embedding(config.padded_vocab_size, config.n_embd),
prelude=prelude,
adapter=adapter,
core_block=core_block,
coda=coda,
ln_f=RMSNorm(config.n_embd, eps=config.norm_eps), # used twice :>
)
)
self.emb_scale = config.init_values["embed_scale"]
# Head
self.lm_head = torch.nn.Linear(config.n_embd, config.padded_vocab_size, bias=False)
if self.config.tie_embeddings:
self.lm_head.weight = self.transformer.wte.weight
# rope
self.register_buffer("freqs_cis", self._precompute_freqs_cis(), persistent=True)
def _precompute_freqs_cis(self):
# can actually be a buffer now, and remains in fp32! (at least in the settings I tested)
freqs_cis = precompute_freqs_cis(
self.config.n_embd // self.config.num_attention_heads, self.config.block_size, self.config.rope_base, 1
)
return freqs_cis
def forward(
self,
input_ids: torch.Tensor,
input_embeds: Optional[torch.Tensor] = None,
input_states: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
num_steps: Optional[torch.Tensor] = None,
past_key_values: Optional[Cache] = None,
output_details: dict = {
"return_logits": True,
"return_latents": True,
"return_attention": False,
"return_head": False,
"return_stats": False,
},
use_cache: bool = False,
cache_position: Optional[torch.Tensor] = None,
**kwargs,
) -> CausalLMOutputRecurrentLatents:
# Support multiple position formats:
if position_ids is None and cache_position is None:
freqs_cis = self.freqs_cis[:, : input_ids.shape[1]]
elif position_ids is not None:
freqs_cis = self.freqs_cis.index_select(1, position_ids.squeeze())
elif cache_position is not None:
freqs_cis = self.freqs_cis[:, cache_position]
if input_embeds is None:
input_embeds = self.transformer.wte(input_ids)
if self.emb_scale != 1:
input_embeds = input_embeds * self.emb_scale # type: ignore
if use_cache and past_key_values is None:
past_key_values = HuginnDynamicCache()
attn_maps = {}
return_attn = output_details["return_attention"]
# Non-recurrent prelude
for block_idx, block in enumerate(self.transformer.prelude):
input_embeds, attn_map = block(
input_embeds, freqs_cis, block_idx, attention_mask, past_key_values, return_attn=return_attn
)
attn_maps[block_idx] = attn_map
# Main recurrence
x, num_steps_no_grad, num_steps_with_grad, xk, block_idx, attn_maps = self.iterate_forward(
input_embeds, # type: ignore
input_states,
freqs_cis,
block_idx,
attention_mask,
past_key_values,
num_steps,
attn_maps,
return_attn=return_attn,
)
latent_states = x.clone().detach()
# Coda layers
for block_idx, block in enumerate(self.transformer.coda, start=1):
x, attn_map = block(x, freqs_cis, -block_idx, attention_mask, past_key_values, return_attn=return_attn)
attn_maps[-block_idx] = attn_map
x = self.transformer.ln_f(x)
# Prediction head, assuming labels really are labels and not equal to input_ids
if labels is not None:
logits = self.lm_head(x).float()
loss = torch.nn.functional.cross_entropy(logits.view(-1, logits.shape[-1]), labels.view(-1))
log_ppl = loss.clone().detach()
else:
logits = self.lm_head(x).float()
loss, log_ppl = torch.as_tensor(0.0), torch.as_tensor(0.0)
return CausalLMOutputRecurrentLatents(
loss=loss,
log_ppl=log_ppl,
logits=logits if output_details["return_logits"] else None,
past_key_values=past_key_values,
hidden_states=x if output_details["return_head"] else None,
latent_states=latent_states if output_details["return_latents"] else None,
attention_maps=attn_maps if output_details["return_attention"] else None, # type: ignore
stats=self.get_stats(logits, x, latent_states, xk, input_embeds, num_steps_no_grad, num_steps_with_grad)
if output_details["return_stats"]
else None,
)
@torch._dynamo.disable(recursive=False) # type: ignore
def iterate_forward(
self,
input_embeds,
input_states,
freqs_cis,
block_idx,
mask,
past_key_values: Optional[Cache] = None,
num_steps: Optional[torch.Tensor] = None,
attn_maps: dict = {},
return_attn: bool = False,
):
x = xk = self.initialize_state(input_embeds) if input_states is None else input_states.clone()
if num_steps is None:
num_steps_no_grad, num_steps_with_grad = self.randomized_iteration_sampler() # type: ignore
elif hasattr(num_steps, "__len__") and len(num_steps) > 1:
num_steps_no_grad, num_steps_with_grad = num_steps
else:
num_steps_no_grad, num_steps_with_grad = num_steps, torch.tensor(0)
with torch.no_grad():
# ultra annoying in ddp due to
# https://discuss.pytorch.org/t/does-distributeddataparallel-work-with-torch-no-grad-and-find-unused-parameters-false/122594
# for now running with find_unused_params=True enabled even though the graph structure is (technically) clear
# and all parameters are always used
for step in range(num_steps_no_grad):
xk = x
x, block_idx, attn_maps = self.core_block_forward(
xk, input_embeds, freqs_cis, mask, past_key_values, block_idx, attn_maps, return_attn
)
for step in range(num_steps_with_grad):
xk = x
x, block_idx, attn_maps = self.core_block_forward(
xk, input_embeds, freqs_cis, mask, past_key_values, block_idx, attn_maps, return_attn
)
return self.transformer.ln_f(x), num_steps_no_grad, num_steps_with_grad, xk.detach(), block_idx, attn_maps
def core_block_forward(
self,
x,
input_embeds,
freqs_cis,
mask,
past_key_values,
block_idx: Union[torch.Tensor, int],
attn_maps: dict = {},
return_attn: bool = False,
):
x = self.transformer.adapter(torch.cat([x, input_embeds], dim=-1))
for idx, block in enumerate(self.transformer.core_block, start=1):
x, attn_map = block(x, freqs_cis, block_idx + idx, mask, past_key_values, return_attn=return_attn)
attn_maps[block_idx + idx] = attn_map
return x, block_idx + idx, attn_maps
@torch.no_grad()
def iterate_one_step(
self,
input_embeds,
input_states,
position_ids: Optional[torch.Tensor] = None,
cache_position: Optional[torch.Tensor] = None,
block_idx: Union[torch.Tensor, int] = 0,
attention_mask: Optional[Tensor] = None,
past_key_values: Optional[Cache] = None,
attn_maps: dict = {},
):
if position_ids is None and cache_position is None:
freqs_cis = self.freqs_cis[:, : input_embeds.shape[1]]
elif position_ids is not None:
freqs_cis = self.freqs_cis.index_select(1, position_ids.squeeze())
elif cache_position is not None:
freqs_cis = self.freqs_cis[:, cache_position]
x, block_idx, attn_maps = self.core_block_forward(
input_states, input_embeds, freqs_cis, attention_mask, past_key_values, block_idx, attn_maps
)
return x, block_idx, attn_maps
def predict_from_latents(
self,
latents,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
cache_position: Optional[torch.Tensor] = None,
past_key_values: Optional[Cache] = None,
return_attn: bool = False,
attn_maps: dict = {},
):
if position_ids is None and cache_position is None:
freqs_cis = self.freqs_cis[:, : latents.shape[1]]
elif position_ids is not None:
freqs_cis = self.freqs_cis.index_select(1, position_ids.squeeze())
elif cache_position is not None:
freqs_cis = self.freqs_cis[:, cache_position]
x = self.transformer.ln_f(latents)
# Coda layers
for block_idx, block in enumerate(self.transformer.coda, start=1):
x, attn_map = block(x, freqs_cis, -block_idx, attention_mask, past_key_values)
attn_maps[block_idx] = attn_map
x = self.transformer.ln_f(x)
logits = self.lm_head(x).float()
return CausalLMOutputRecurrentLatents(
loss=torch.as_tensor(0.0),
log_ppl=torch.as_tensor(0.0),
logits=logits,
past_key_values=past_key_values,
attention_maps=attn_maps if len(attn_maps) > 0 else None,
)
def embed_inputs(
self,
input_ids: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
past_key_values: Optional[Cache] = None,
use_cache: bool = False,
cache_position: Optional[torch.Tensor] = None,
return_attn: bool = False,
**kwargs,
) -> tuple[torch.Tensor, int, dict[int, Tensor]]:
# Support multiple position formats:
if position_ids is None and cache_position is None:
freqs_cis = self.freqs_cis[:, : input_ids.shape[1]]
elif position_ids is not None:
freqs_cis = self.freqs_cis.index_select(1, position_ids.squeeze())
elif cache_position is not None:
freqs_cis = self.freqs_cis[:, cache_position]
input_embeds = self.transformer.wte(input_ids)
if self.emb_scale != 1:
input_embeds = input_embeds * self.emb_scale # type: ignore
if use_cache and past_key_values is None:
past_key_values = HuginnDynamicCache()
# Non-recurrent prelude
attn_maps = {}
for block_idx, block in enumerate(self.transformer.prelude):
input_embeds, attn_maps = block(
input_embeds, freqs_cis, block_idx, attention_mask, past_key_values, return_attn
)
return input_embeds, block_idx, attn_maps
@torch._dynamo.disable(recursive=False) # type: ignore
def randomized_iteration_sampler(self) -> tuple[torch.Tensor, torch.Tensor]:
"""Outputs are long tensors so that they can be passed through compiled functions"""
t = max(self.config.mean_recurrence - self.config.mean_backprop_depth, 0)
s = self.config.mean_backprop_depth
if self.training:
sigma = 0.5
mu = math.log(t + s) - (sigma**2 / 2)
rate = torch.zeros((1,)).log_normal_(mean=mu, std=sigma)
p = torch.poisson(torch.tensor([rate], dtype=torch.float)) + 1
n = torch.clamp(p - s, min=0)
k = torch.as_tensor(torch.minimum(torch.as_tensor(s), p))
else:
n, k = torch.as_tensor(self.config.mean_recurrence), torch.as_tensor(0)
return n.to(dtype=torch.long), k.to(dtype=torch.long)
def initialize_state(self, input_embeds, deterministic: bool = False):
x = torch.randn_like(input_embeds)
std = self.config.init_values["std"]
torch.nn.init.trunc_normal_(x, mean=0.0, std=std, a=-3 * std, b=3 * std)
if self.emb_scale != 1:
x = x * self.emb_scale
return x if not deterministic else x.zero_()
def prepare_inputs_for_generation(
self,
input_ids: torch.LongTensor,
past_key_values: Optional[Cache] = None,
attention_mask: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
):
model_inputs = {}
model_inputs["cache_position"] = cache_position
current_input_length = input_ids.shape[1]
if past_key_values is not None:
if type(past_key_values) != HuginnDynamicCache:
# Need to use custom cache, detect and replace HF dynamic cache if generate injects it
assert past_key_values.get_seq_length() == 0
past_key_values = HuginnDynamicCache()
model_inputs["past_key_values"] = past_key_values if kwargs["use_cache"] else None
input_ids = input_ids[:, cache_position] # type: ignore
model_inputs["input_ids"] = input_ids.clone(memory_format=torch.contiguous_format)
if cache_position is None:
position_ids = torch.arange(current_input_length)[None, :].to(input_ids.device)
model_inputs["position_ids"] = position_ids[:, -current_input_length:].clone(
memory_format=torch.contiguous_format
) # some form of position_ids is a critical argument for the model to correctly apply rope!
# forward all other entries
for key, value in kwargs.items():
if key not in model_inputs:
model_inputs[key] = value
return model_inputs
@torch.no_grad()
def generate(self, *args, **kwargs):
"""Dispatcher - use HF generate in all normal cases."""
if any(
k in kwargs
for k in ("continuous_compute", "latent_dampening", "criterion", "exit_threshold", "cache_kwargs")
):
print("Dispatching to custom generate function call")
return self.generate_with_adaptive_compute(*args, **kwargs)
else:
return super().generate(*args, **kwargs)
@torch.no_grad()
def generate_minimal(
self,
input_ids: torch.LongTensor,
generation_config: Optional[GenerationConfig] = None, # type: ignore
tokenizer=None,
streamer=None,
continuous_compute=False, # warm-start state / continuous CoT
cache_kwargs: dict = {},
**model_kwargs,
) -> Union[torch.Tensor, dict[str, Any]]:
"""Minimal single-sequence generation. Template for more complicated generate tasks"""
# Setup
if generation_config is None:
generation_config: GenerationConfig = self.generation_config # type: ignore
model_kwargs["past_key_values"] = HuginnDynamicCache(**cache_kwargs)
model_kwargs["use_cache"] = True
model_kwargs = self._get_initial_cache_position(input_ids, model_kwargs)
stop_tokens = self._get_stops(generation_config, tokenizer).to(input_ids.device)
if continuous_compute:
embedded_inputs, _, _ = self.embed_inputs(input_ids)
model_kwargs["input_states"] = self.initialize_state(embedded_inputs)
# Generate tokens
for _ in range(generation_config.max_length - input_ids.shape[1]):
# Forward pass
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
outputs = self(**model_inputs)
next_token_logits = outputs.logits[0, -1, :]
if continuous_compute:
current_last_latent = outputs.latent_states[:, -1:, :]
# Sample or select next token
if generation_config.do_sample:
if generation_config.temperature:
next_token_logits = next_token_logits / generation_config.temperature
probs = F.softmax(next_token_logits, dim=-1)
# Apply top_k
if generation_config.top_k:
top_k_probs, _ = torch.topk(probs, generation_config.top_k)
probs[probs < top_k_probs[-1]] = 0
# Apply top_p
if generation_config.top_p:
sorted_probs = torch.sort(probs, descending=True)[0]
cumsum = torch.cumsum(sorted_probs, dim=-1)
probs[cumsum > generation_config.top_p] = 0
# Apply min_p
if generation_config.min_p:
probs[probs < generation_config.min_p * probs.max()] = 0
probs = probs / probs.sum()
next_token = torch.multinomial(probs, num_samples=1)
else:
next_token = torch.argmax(next_token_logits, dim=-1, keepdim=True)
input_ids = torch.cat([input_ids, next_token[None, :]], dim=-1) # type: ignore
if streamer:
streamer.put(next_token.cpu())
# Update model kwargs
model_kwargs = self._update_model_kwargs_for_generation(outputs, model_kwargs)
if continuous_compute:
model_kwargs["input_states"] = current_last_latent
# Check if we hit a stop token
if stop_tokens is not None and next_token in stop_tokens:
break
if streamer:
streamer.end()
if generation_config.return_dict_in_generate:
return GenerateDecoderOnlyOutput(
sequences=input_ids,
scores=None,
logits=None,
attentions=None,
hidden_states=None,
past_key_values=model_kwargs.get("past_key_values"),
)
return input_ids
@torch.no_grad()
def generate_with_adaptive_compute(
self,
input_ids: torch.LongTensor,
generation_config: Optional[GenerationConfig] = None, # type: ignore
tokenizer=None,
streamer=None,
continuous_compute=False, # warm-start state / continuous CoT
latent_dampening=False,
criterion="entropy-diff",
exit_threshold: Union[str, float, int] = "auto",
cache_kwargs: dict = {},
**model_kwargs,
) -> Union[torch.Tensor, GenerateDecoderOnlyOutput]:
"""Minimal single-sequence generation. Template for more complicated generate tasks"""
# Setup
if generation_config is None:
generation_config: GenerationConfig = self.generation_config # type: ignore
model_kwargs["past_key_values"] = HuginnDynamicCache(**cache_kwargs)
model_kwargs["use_cache"] = True
model_kwargs = self._get_initial_cache_position(input_ids, model_kwargs)
stop_tokens = self._get_stops(generation_config, tokenizer).to(input_ids.device)
if continuous_compute:
embedded_inputs, _, _ = self.embed_inputs(input_ids)
current_last_latent = self.initialize_state(embedded_inputs)
compute_steps = []
# Generate tokens
for step in range(generation_config.max_length - input_ids.shape[1]):
# Adaptive compute forward
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
aux_inputs = {
k: model_inputs[k] for k in ["cache_position", "past_key_values", "attention_mask"] if k in model_inputs
}
embedded_inputs, block_idx, _ = self.embed_inputs(model_inputs["input_ids"], **aux_inputs)
if not continuous_compute:
current_latents = self.initialize_state(embedded_inputs, deterministic=False)
else:
current_latents = current_last_latent
# Prep criterions:
if criterion == "entropy-diff":
entropy = torch.tensor(100.0, device=input_ids.device)
exit_threshold = 1e-3 if exit_threshold == "auto" else float(exit_threshold)
elif criterion in ["latent-diff", "none"]:
exit_threshold = 0.03 if exit_threshold == "auto" else float(exit_threshold)
elif "kl" in criterion:
V = self.config.padded_vocab_size
log_probs = (1 / V * torch.ones(V, device=input_ids.device)).log()
if criterion == "minp-kl":
exit_threshold = 1e-6 if exit_threshold == "auto" else float(exit_threshold)
else:
exit_threshold = 5e-4 if exit_threshold == "auto" else float(exit_threshold)
elif criterion == "argmax-stability":
stable_for_n_steps = 0
current_argmax = torch.tensor(-1, dtype=torch.long, device=input_ids.device)
exit_threshold = 5 if exit_threshold == "auto" else int(exit_threshold)
else:
raise ValueError("Invalid adaptive compute strategy.")
all_latents = []
exit_values = []
for compute_step in range(model_inputs["num_steps"]):
prev_latents = current_latents.clone()
current_latents, block_idx, _ = self.iterate_one_step(
embedded_inputs, current_latents, block_idx=block_idx, **aux_inputs
)
all_latents.append(current_latents if latent_dampening else None)
if step > 0: # do not exit in prefill:
if criterion == "entropy-diff":
prev_entropy = entropy.clone()
outputs = self.predict_from_latents(current_latents, **aux_inputs)
probs = F.softmax(outputs.logits[:, -1, :], dim=-1) # type: ignore
entropy = -torch.sum(probs * torch.log(probs + 1e-10), dim=-1).mean()
entropy_diff = (entropy - prev_entropy).abs()
exit_values.append(entropy_diff.item())
if entropy_diff < exit_threshold:
break
elif criterion == "latent-diff":
norm_diff = (prev_latents - current_latents).norm() / current_latents.norm()
exit_values.append(norm_diff.item())
if norm_diff < exit_threshold:
break
elif criterion == "kl":
prev_log_probs = log_probs.clone()
outputs = self.predict_from_latents(current_latents, **aux_inputs)
log_probs = F.log_softmax(outputs.logits[:, -1, :], dim=-1) # type: ignore
kl = F.kl_div(log_probs, prev_log_probs, reduction="none", log_target=True).sum(dim=-1)
exit_values.append(kl.item())
if kl < exit_threshold:
break
elif criterion == "minp-kl":
prev_log_probs = log_probs.clone()
outputs = self.predict_from_latents(current_latents, **aux_inputs)
probs = F.softmax(outputs.logits[:, -1, :], dim=-1) # type: ignore
probs[probs < 0.1 * probs.max()] = 1 / V
probs = probs / probs.sum()
log_probs = probs.log()
kl = F.kl_div(log_probs, prev_log_probs, reduction="none", log_target=True).sum(dim=-1)
exit_values.append(kl.item())
if kl < exit_threshold:
break
elif criterion == "argmax-stability":
prev_argmax = current_argmax.clone()
outputs = self.predict_from_latents(current_latents, **aux_inputs)
current_argmax = outputs.logits[0, -1, :].argmax(dim=-1) # type: ignore
if current_argmax == prev_argmax:
stable_for_n_steps += 1
else:
stable_for_n_steps = 0
exit_values.append(stable_for_n_steps)
if stable_for_n_steps >= exit_threshold:
break
elif criterion == "none":
pass
else:
if not latent_dampening:
outputs = self.predict_from_latents(current_latents, **aux_inputs)
else:
dampened_latents = torch.sum(torch.cat(all_latents, dim=0), dim=0, keepdim=True)
outputs = self.predict_from_latents(dampened_latents, **aux_inputs)
compute_steps.append([compute_step + 1, exit_values])
next_token_logits = outputs.logits[0, -1, :] # type: ignore
if continuous_compute: # Save last latent
current_last_latent = current_latents[:, -1:, :]
# Sample or select next token
if generation_config.do_sample:
if generation_config.temperature:
next_token_logits = next_token_logits / generation_config.temperature
probs = F.softmax(next_token_logits, dim=-1)
# Apply top_k
if generation_config.top_k:
top_k_probs, _ = torch.topk(probs, generation_config.top_k)
probs[probs < top_k_probs[-1]] = 0
# Apply top_p
if generation_config.top_p:
sorted_probs = torch.sort(probs, descending=True)[0]
cumsum = torch.cumsum(sorted_probs, dim=-1)
probs[cumsum > generation_config.top_p] = 0
# Apply min_p
if generation_config.min_p:
probs[probs < generation_config.min_p * probs.max()] = 0
probs = probs / probs.sum()
next_token = torch.multinomial(probs, num_samples=1)
else:
next_token = torch.argmax(next_token_logits, dim=-1, keepdim=True)
input_ids = torch.cat([input_ids, next_token[None, :]], dim=-1) # type: ignore
if streamer:
streamer.put(next_token.cpu())
# Update model kwargs
model_kwargs = self._update_model_kwargs_for_generation(outputs, model_kwargs)
# Check if we hit a stop token
if stop_tokens is not None and next_token in stop_tokens:
break
if streamer:
streamer.end()
if generation_config.return_dict_in_generate:
return GenerateDecoderOnlyOutput(
sequences=input_ids,
scores=compute_steps, # type: ignore
logits=None,
attentions=None,
hidden_states=None,
past_key_values=model_kwargs.get("past_key_values"),
)
return input_ids
def _get_stops(self, generation_config, tokenizer):
stop_tokens = set()
if generation_config.eos_token_id is not None:
stop_tokens.add(generation_config.eos_token_id)
if hasattr(generation_config, "stop_strings") and tokenizer and generation_config.stop_strings:
for s in generation_config.stop_strings:
token_id = tokenizer(s, add_special_tokens=False)["input_ids"][0]
stop_tokens.add(token_id)
return torch.tensor(list(stop_tokens))
def get_stats(self, logits, x, latent_states, xk, input_embeds, num_steps_no_grad, num_steps_with_grad):
probs = torch.softmax(logits.float(), dim=-1)
prob_entropy = torch.where(probs > 0, -probs * probs.log(), 0).sum(dim=-1)
residual_diff = (x - latent_states).norm(dim=-1)
rel_residual = residual_diff / latent_states.norm(dim=-1)
stats = {
"entropy": prob_entropy,
"residual_diff": residual_diff,
"rel_residual": rel_residual,
"num_steps_no_grad": num_steps_no_grad,
"num_steps_with_grad": num_steps_with_grad,
}
return stats
#################################### Utils #######################################################################
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0, condense_ratio: int = 1):
with torch.autocast("cuda", enabled=False):
inv_freqs = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
t = torch.arange(end, dtype=torch.float32, device=inv_freqs.device) / condense_ratio
freqs = torch.outer(t, inv_freqs).float()
return torch.stack([torch.cos(freqs)[None, :, None, :], torch.sin(freqs)[None, :, None, :]], dim=4)
# equivalent to
# freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
# cache = torch.stack([freqs_cis.real, freqs_cis.imag], dim=-1)
def apply_rotary_emb_complex_like(q: Tensor, k: Tensor, freqs_cis: Tensor) -> tuple[Tensor, Tensor]:
with torch.autocast("cuda", enabled=False):
qk_r2 = torch.cat([q, k], dim=2).unflatten(dim=-1, sizes=(-1, 2)).float() # cast to float32 for smooth skin
rotated_qk_r2 = torch.stack(
[
qk_r2[..., 0] * freqs_cis[..., 0] - qk_r2[..., 1] * freqs_cis[..., 1],
qk_r2[..., 1] * freqs_cis[..., 0] + qk_r2[..., 0] * freqs_cis[..., 1],
],
-1,
).flatten(3)
rotated_qk = rotated_qk_r2
return torch.split(rotated_qk.type_as(q), q.shape[2], dim=2) # type: ignore
#################################### HF registration ############################################################
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
# New
RavenConfig.register_for_auto_class()
RavenForCausalLM.register_for_auto_class("AutoModel")
RavenForCausalLM.register_for_auto_class("AutoModelForCausalLM")
# Old?
AutoConfig.register("huginn_raven", RavenConfig)
AutoModel.register(RavenConfig, RavenForCausalLM)
AutoModelForCausalLM.register(RavenConfig, RavenForCausalLM)
|