Llama-3-8b-ultra-dpo-e2
This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.5453
- Rewards/chosen: -0.8950
- Rewards/rejected: -1.7403
- Rewards/accuracies: 0.7422
- Rewards/margins: 0.8454
- Logps/rejected: -438.6973
- Logps/chosen: -346.0516
- Logits/rejected: 0.6221
- Logits/chosen: 0.4858
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2.0
Training results
Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
---|---|---|---|---|---|---|---|---|---|---|---|
0.6335 | 0.2060 | 100 | 0.6304 | -0.3352 | -0.5566 | 0.6797 | 0.2214 | -320.3228 | -290.0782 | 0.2964 | 0.2341 |
0.6079 | 0.4119 | 200 | 0.6033 | -0.3981 | -0.7457 | 0.6875 | 0.3475 | -339.2305 | -296.3674 | 0.2534 | 0.1750 |
0.5833 | 0.6179 | 300 | 0.5853 | -0.5366 | -1.0116 | 0.6641 | 0.4749 | -365.8224 | -310.2185 | 0.4021 | 0.2900 |
0.5721 | 0.8239 | 400 | 0.5701 | -0.5617 | -1.1202 | 0.7031 | 0.5585 | -376.6856 | -312.7222 | 0.4446 | 0.3219 |
0.5326 | 1.0299 | 500 | 0.5544 | -0.7451 | -1.4427 | 0.7578 | 0.6976 | -408.9373 | -331.0641 | 0.4961 | 0.3617 |
0.4773 | 1.2358 | 600 | 0.5543 | -0.9312 | -1.7472 | 0.7031 | 0.8160 | -439.3852 | -349.6768 | 0.6470 | 0.5120 |
0.4892 | 1.4418 | 700 | 0.5471 | -0.8746 | -1.7007 | 0.7344 | 0.8261 | -434.7292 | -344.0101 | 0.6372 | 0.5024 |
0.4895 | 1.6478 | 800 | 0.5452 | -0.9033 | -1.7335 | 0.7188 | 0.8302 | -438.0132 | -346.8821 | 0.6595 | 0.5221 |
0.4926 | 1.8538 | 900 | 0.5455 | -0.9149 | -1.7694 | 0.7266 | 0.8545 | -441.6077 | -348.0443 | 0.6296 | 0.4935 |
Framework versions
- Transformers 4.45.1
- Pytorch 2.4.1+cu121
- Datasets 3.0.0
- Tokenizers 0.20.0
- Downloads last month
- 6
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.