RoBERTa for Multi-label Classification of Policy Instruments
This model fine-tunes roberta-base
for multilabel classification of policies, targets, and themes.
Model Details
- Base model: roberta-base
- Max length: 512
- Output: 67 multilabel classes (PI - Policy Instrument, TG - Target Group, TH - Theme). There are three main classes that have further sub-categories in them.
- Threshold: 0.25
Intended Use
Classify policy documents descriptions into thematic categories.
How to Use
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
import numpy as np
import joblib
import requests
model_path = "toqeerehsan/multilabel-indicator-classification"
model = AutoModelForSequenceClassification.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path)
mlb_url = "https://huggingface.co/toqeerehsan/multilabel-indicator-classification/resolve/main/mlb.pkl"
mlb_path = "mlb.pkl"
with open(mlb_path, "wb") as f:
f.write(requests.get(mlb_url).content)
mlb = joblib.load(mlb_path)
text = "This program supports clean technology and sustainable development in industries."
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
model.eval()
with torch.no_grad():
logits = model(**inputs).logits
probs = torch.sigmoid(logits).squeeze().numpy()
# Threshold
binary_preds = (probs > 0.25).astype(int)
predicted_labels = [label for i, label in enumerate(mlb.classes_) if binary_preds[i] == 1]
print("Predicted Labels:", predicted_labels)
# Predicted Labels: ['PI007', 'PI008', 'TG20', 'TG21', 'TG22', 'TG25', 'TG29', 'TG31', 'TH31']
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support