toqeerehsan commited on
Commit
c1612e1
·
verified ·
1 Parent(s): 08b5ad7

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +61 -0
README.md ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ tags:
4
+ - roberta
5
+ - multilabel-classification
6
+ - policy-analysis
7
+ - huggingface
8
+ datasets:
9
+ - custom
10
+ license: apache-2.0
11
+ ---
12
+
13
+ # RoBERTa for Multi-label Classification of Policy Instruments
14
+
15
+ This model fine-tunes `roberta-base` for multilabel classification of policies, targets, and themes.
16
+
17
+ ## Model Details
18
+ - Base model: roberta-base
19
+ - Max length: 512
20
+ - Output: 47 multilabel classes (PI - Policy Instrument, TG - Target Group, TH - Theme). There are three main classes that have further sub-categories in them.
21
+ - Threshold: 0.25
22
+
23
+ ## Intended Use
24
+ Classify policy documents descriptions into thematic categories.
25
+
26
+ ## How to Use
27
+
28
+ ```python
29
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
30
+ import torch
31
+ import numpy as np
32
+ import joblib
33
+ import requests
34
+
35
+ model_path = "toqeerehsan/multilabel-indicator-classification"
36
+ model = AutoModelForSequenceClassification.from_pretrained(model_path)
37
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
38
+
39
+ mlb_url = "https://huggingface.co/toqeerehsan/multilabel-indicator-classification/resolve/main/mlb.pkl"
40
+ mlb_path = "mlb.pkl"
41
+
42
+ with open(mlb_path, "wb") as f:
43
+ f.write(requests.get(mlb_url).content)
44
+ mlb = joblib.load(mlb_path)
45
+
46
+ text = "This program supports clean technology and sustainable development in industries."
47
+
48
+ inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
49
+
50
+ model.eval()
51
+ with torch.no_grad():
52
+ logits = model(**inputs).logits
53
+ probs = torch.sigmoid(logits).squeeze().numpy()
54
+
55
+ # Threshold
56
+ binary_preds = (probs > 0.25).astype(int)
57
+ predicted_labels = [label for i, label in enumerate(mlb.classes_) if binary_preds[i] == 1]
58
+
59
+ print("Predicted Labels:", predicted_labels)
60
+
61
+ # Predicted Labels: ['PI007', 'PI008', 'TG20', 'TG21', 'TG22', 'TG25', 'TG29', 'TG31', 'TH31']