tparng's picture
tparng/roberta-base-lora-text-classification
e1ebce0
---
license: mit
base_model: roberta-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: roberta-base-lora-text-classification
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-base-lora-text-classification
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7451
- Accuracy: {'accuracy': 0.933}
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:-------------------:|
| No log | 1.0 | 250 | 0.3071 | {'accuracy': 0.919} |
| 0.3665 | 2.0 | 500 | 0.3954 | {'accuracy': 0.922} |
| 0.3665 | 3.0 | 750 | 0.3318 | {'accuracy': 0.937} |
| 0.1483 | 4.0 | 1000 | 0.5179 | {'accuracy': 0.942} |
| 0.1483 | 5.0 | 1250 | 0.5112 | {'accuracy': 0.933} |
| 0.0829 | 6.0 | 1500 | 0.5775 | {'accuracy': 0.936} |
| 0.0829 | 7.0 | 1750 | 0.6473 | {'accuracy': 0.931} |
| 0.019 | 8.0 | 2000 | 0.6950 | {'accuracy': 0.937} |
| 0.019 | 9.0 | 2250 | 0.7328 | {'accuracy': 0.931} |
| 0.008 | 10.0 | 2500 | 0.7451 | {'accuracy': 0.933} |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.1+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0