Translation
PEFT
Safetensors

Pretrained LM

Training Dataset

Prompt

  • Template:

      # one of 'src_lang' and 'tgt_lang' should be "ํ•œ๊ตญ์–ด"
      src_lang = "English" # English, ํ•œ๊ตญ์–ด, ๆ—ฅๆœฌ่ชž, ไธญๆ–‡
      tgt_lang = "ํ•œ๊ตญ์–ด" # English, ํ•œ๊ตญ์–ด, ๆ—ฅๆœฌ่ชž, ไธญๆ–‡
      text = "New era, same empire. T1 is your 2024 Worlds champion!"
    
      # task part
      task_xml_dict = {
        'head': "<task>",
        'body': f"Translate the source sentence from {src_lang} to {tgt_lang}.\nBe sure to reflect the guidelines below when translating.",
        'tail': "</task>"
      }
      task = f"{task_xml_dict['head']}\n{task_xml_dict['body']}\n{task_xml_dict['tail']}"
    
      # instruction part
      instruction_xml_dict = {
        'head': "<instruction>",
        'body': ["Translate without any condition."],
        'tail': "</instruction>"
      }
      instruction_xml_body = '\n'.join([f'- {body}' for body in instruction_xml_dict['body']])
      instruction = f"{instruction_xml_dict['head']}\n{instruction_xml_body}\n{instruction_xml_dict['tail']}"
    
      # translation part
      src_xml_dict = {
        'head': f"<source><{src_lang}>",
        'body': text.strip(),
        'tail': f"</{src_lang}></source>"
      }
      tgt_xml_dict = {
        'head': f"<target><{tgt_lang}>",
      }
      src = f"{src_xml_dict['head']}\n{src_xml_dict['body']}\n{src_xml_dict['tail']}"
      tgt = f"{tgt_xml_dict['head']}\n"
      translation_xml_dict = {
        'head': "<translation>",
        'body': f"{src}\n{tgt}",
      }
      translation = f"{translation_xml_dict['head']}\n{translation_xml_dict['body']}"
    
      # final prompt
      prompt = f"{task}\n\n{instruction}\n\n{translation}"
    
  • Example Input:

    <task>
    Translate the source sentence from English to ํ•œ๊ตญ์–ด.
    Be sure to reflect the guidelines below when translating.
    </task>
    
    <instruction>
    - Translate without any condition.
    </instruction>
    
    <translation>
    <source><English>
    New era, same empire. T1 is your 2024 Worlds champion!
    </English></source>
    <target><ํ•œ๊ตญ์–ด>
    
  • Expected Output:

    ์ƒˆ๋กœ์šด ์‹œ๋Œ€, ์—ฌ์ „ํ•œ ์™•์กฐ. ํ‹ฐ์›์ด 2024 ์›”์ฆˆ์˜ ์ฑ”ํ”ผ์–ธ์ž…๋‹ˆ๋‹ค!
    </ํ•œ๊ตญ์–ด></target>
    </translation>
    

    Model will generate the XML end tags.

Training

  • Trained with LoRA adapter
    • PLM: bfloat16
    • Adapter: bfloat16
    • Adapted to all the linear layers (around 2.05%)

Usage (IMPORTANT)

  • Should remove the EOS token at the end of the prompt.
      # MODEL
      model_name = 'beomi/Llama-3-Open-Ko-8B'
      adapter_name = 'traintogpb/llama-3-mmt-xml-it-sft-adapter'
    
      model = AutoModelForCausalLM.from_pretrained(
          model_name,
          max_length=4096,
          attn_implementation='flash_attention_2',
          torch_dtype=torch.bfloat16,
      )
      model = PeftModel.from_pretrained(
          model,
          adapter_path=adapter_name,
          torch_dtype=torch.bfloat16,
      )
    
      tokenizer = AutoTokenizer.from_pretrained(adapter_name)
      tokenizer.pad_token_id = 128002 # eos_token_id and pad_token_id should be different
    
      text = "New era, same empire. T1 is your 2024 Worlds champion!"
      input_prompt = "<task> ~ <target><{tgt_lang}>" # prompt with the template above
      inputs = tokenizer(input_prompt, max_length=2000, truncation=True, return_tensors='pt')
    
      if inputs['input_ids'][0][-1] == tokenizer.eos_token_id:
          inputs['input_ids'] = inputs['input_ids'][0][:-1].unsqueeze(dim=0)
          inputs['attention_mask'] = inputs['attention_mask'][0][:-1].unsqueeze(dim=0)
    
      outputs = model.generate(**inputs, max_length=2000, eos_token_id=tokenizer.eos_token_id)
    
      input_len = len(inputs['input_ids'].squeeze())
      translation = tokenizer.decode(outputs[0][input_len:], skip_special_tokens=True)
      print(translation)
    

Framework versions

  • PEFT 0.8.2
Downloads last month
32
Inference Examples
Inference API (serverless) does not yet support peft models for this pipeline type.

Model tree for traintogpb/llama-3-mmt-xml-it-sft-adapter

Adapter
(19)
this model

Dataset used to train traintogpb/llama-3-mmt-xml-it-sft-adapter