|
--- |
|
license: llama3.1 |
|
datasets: |
|
- trollek/Danoia-v03 |
|
- trollek/Danoia-v02 |
|
- N8Programs/CreativeGPT |
|
- Gryphe/Opus-WritingPrompts |
|
language: |
|
- da |
|
- en |
|
base_model: |
|
- unsloth/Meta-Llama-3.1-8B-Instruct |
|
library_name: transformers |
|
tags: |
|
- llama-factory |
|
- unsloth |
|
--- |
|
# Llama 3.1 8B Danoia |
|
|
|
This model is a fine-tuned version of [unsloth/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/unsloth/Meta-Llama-3.1-8B-Instruct) on the danoia_v03, the opus_writing_instruct, the creativegpt and the danoia_v02_no_system datasets + some private datasets related to evaluation. |
|
|
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.7108 |
|
|
|
## Model description |
|
|
|
This model can write stories in danish and english. It can do much more, I am sure of it, but not more than the vanilla model it is based on. |
|
|
|
## Intended uses & limitations |
|
|
|
Danoia is intended to be private assistant able to write essays, summarise articles, and be a helpful assistant in general. It misspells danish words at times but it is rare though. |
|
|
|
## Training and evaluation data |
|
|
|
I trained this using [LLama-Factory](https://github.com/hiyouga/LLaMA-Factory "LLama Factorys' GitHub") with [unsloth](https://github.com/unslothai/unsloth "unsloths' GitHub") enabled on a 16GB 4060 Ti. It took 30 hours and peaked at 13GB VRAM usage. |
|
|
|
<details> |
|
|
|
<summary>Show LLama-Factory config</summary> |
|
|
|
```yaml |
|
### model |
|
model_name_or_path: unsloth/Meta-Llama-3.1-8B-Instruct |
|
|
|
### method |
|
stage: sft |
|
do_train: true |
|
finetuning_type: lora |
|
lora_target: all |
|
loraplus_lr_ratio: 16.0 |
|
lora_rank: 16 |
|
lora_alpha: 32 |
|
use_unsloth: true |
|
use_unsloth_gc: true |
|
quantization_bit: 4 |
|
upcast_layernorm: true |
|
seed: 192 |
|
|
|
### dataset |
|
dataset: danoia_v03,opus_writing_instruct,creativegpt,danoia_v02_no_system |
|
template: llama3 |
|
cutoff_len: 8192 |
|
overwrite_cache: false |
|
preprocessing_num_workers: 12 |
|
|
|
### output |
|
output_dir: llama31/8b_instruct/loras/danoia |
|
logging_steps: 1 |
|
save_steps: 500 |
|
save_strategy: steps |
|
plot_loss: true |
|
overwrite_output_dir: false |
|
|
|
### train |
|
per_device_train_batch_size: 2 |
|
gradient_accumulation_steps: 4 |
|
learning_rate: 1.5e-5 |
|
num_train_epochs: 1.5 |
|
lr_scheduler_type: cosine |
|
warmup_ratio: 0.01 |
|
bf16: true |
|
|
|
## eval |
|
val_size: 0.01 |
|
per_device_eval_batch_size: 1 |
|
eval_strategy: steps |
|
eval_steps: 500 |
|
``` |
|
</details> |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1.5e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 1 |
|
- seed: 192 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 8 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.01 |
|
- num_epochs: 1.5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:-----:|:---------------:| |
|
| 0.2352 | 0.0719 | 500 | 0.8450 | |
|
| 0.1742 | 0.1438 | 1000 | 0.8090 | |
|
| 0.1667 | 0.2156 | 1500 | 0.7889 | |
|
| 0.3791 | 0.2875 | 2000 | 0.7750 | |
|
| 0.1989 | 0.3594 | 2500 | 0.7665 | |
|
| 0.2347 | 0.4313 | 3000 | 0.7563 | |
|
| 0.1694 | 0.5032 | 3500 | 0.7498 | |
|
| 0.2351 | 0.5750 | 4000 | 0.7412 | |
|
| 0.2322 | 0.6469 | 4500 | 0.7363 | |
|
| 0.1689 | 0.7188 | 5000 | 0.7298 | |
|
| 0.1953 | 0.7907 | 5500 | 0.7250 | |
|
| 0.2099 | 0.8626 | 6000 | 0.7214 | |
|
| 0.2368 | 0.9344 | 6500 | 0.7166 | |
|
| 0.1632 | 1.0063 | 7000 | 0.7151 | |
|
| 0.1558 | 1.0782 | 7500 | 0.7157 | |
|
| 0.2854 | 1.1501 | 8000 | 0.7139 | |
|
| 0.199 | 1.2220 | 8500 | 0.7127 | |
|
| 0.1606 | 1.2938 | 9000 | 0.7117 | |
|
| 0.1788 | 1.3657 | 9500 | 0.7112 | |
|
| 0.2618 | 1.4376 | 10000 | 0.7109 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.12.0 |
|
- Transformers 4.46.1 |
|
- Pytorch 2.5.1 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.20.3 |