File size: 2,205 Bytes
bf1d723 986fd72 bf1d723 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
---
license: apache-2.0
datasets:
- m-a-p/CodeFeedback-Filtered-Instruction
- m-a-p/Code-Feedback
language:
- en
library_name: transformers
tags:
- llama-factory
- unsloth
---
# h2o-danube2 with ChatML template
This model was first fine-tuned with [BAdam](https://arxiv.org/abs/2404.02827 "BAdam: A Memory Efficient Full Parameter Optimization Method for Large Language Models") on [m-a-p/CodeFeedback-Filtered-Instruction](https://huggingface.co/datasets/m-a-p/CodeFeedback-Filtered-Instruction) and [m-a-p/Code-Feedback](https://huggingface.co/datasets/m-a-p/Code-Feedback), unfiltered from the latest [dolphin dataset](https://huggingface.co/datasets/cognitivecomputations/dolphin-2.9.3), using LLama-Factory.
## Template
```jinja
<|im_start|>system
You are a helpful coding assistant.<|im_end|>
<|im_start|>user
{{instruction}}<|im_end|>
<|im_start|>assistant
{{response}}<|im_end|>
```
## BAdam config
**System:** You are a helpful coding assistant.
```yaml
### model
model_name_or_path: danube2-base-chatml
### method
stage: sft
do_train: true
finetuning_type: full
use_badam: true
badam_switch_mode: ascending
badam_switch_interval: 50
badam_verbose: 1
badam_start_block: 10
seed: 720
### dataset
dataset: codefeedback_instruct_unfiltered,codefeedback_unfiltered
template: hermes_chatml
cutoff_len: 8192
overwrite_cache: false
preprocessing_num_workers: 12
### output
output_dir: code-feedback-chatml-badam
logging_steps: 5
save_steps: 1
save_strategy: epoch
plot_loss: true
overwrite_output_dir: false
### train
per_device_train_batch_size: 2
gradient_accumulation_steps: 8
learning_rate: 0.00001
num_train_epochs: 1
lr_scheduler_type: cosine
warmup_ratio: 0.01
bf16: true
flash_attn: fa2
### eval
val_size: 0.01
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 2000
```
### BAdam training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:-----:|:---------------:|
| 0.6181 | 0.1789 | 2000 | 0.6044 |
| 0.6835 | 0.3578 | 4000 | 0.5949 |
| 0.5649 | 0.5367 | 6000 | 0.5893 |
| 0.6559 | 0.7155 | 8000 | 0.5850 |
| 0.6591 | 0.8944 | 10000 | 0.5839 |
|