troybvo's picture
End of training
24a692e verified
metadata
license: other
base_model: nvidia/mit-b0
tags:
  - vision
  - image-segmentation
  - generated_from_trainer
model-index:
  - name: segformer-b0-finetuned-segments-sidewalk-test
    results: []

segformer-b0-finetuned-segments-sidewalk-test

This model is a fine-tuned version of nvidia/mit-b0 on the segments/sidewalk-semantic dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1893
  • Mean Iou: 0.4552
  • Mean Accuracy: 0.9104
  • Overall Accuracy: 0.9104
  • Accuracy Other: nan
  • Accuracy Flat-sidewalk: 0.9104
  • Iou Other: 0.0
  • Iou Flat-sidewalk: 0.9104

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Other Accuracy Flat-sidewalk Iou Other Iou Flat-sidewalk
0.4805 0.05 20 0.5080 0.4534 0.9069 0.9069 nan 0.9069 0.0 0.9069
0.2146 0.1 40 0.3937 0.4660 0.9319 0.9319 nan 0.9319 0.0 0.9319
0.215 0.15 60 0.3593 0.4476 0.8952 0.8952 nan 0.8952 0.0 0.8952
0.151 0.2 80 0.2834 0.4423 0.8845 0.8845 nan 0.8845 0.0 0.8845
0.174 0.25 100 0.3268 0.4612 0.9225 0.9225 nan 0.9225 0.0 0.9225
0.1597 0.3 120 0.2900 0.4229 0.8457 0.8457 nan 0.8457 0.0 0.8457
0.2165 0.35 140 0.2723 0.4411 0.8822 0.8822 nan 0.8822 0.0 0.8822
0.2 0.4 160 0.2598 0.4167 0.8334 0.8334 nan 0.8334 0.0 0.8334
0.577 0.45 180 0.3185 0.4708 0.9416 0.9416 nan 0.9416 0.0 0.9416
0.2466 0.5 200 0.2305 0.4295 0.8589 0.8589 nan 0.8589 0.0 0.8589
0.1742 0.55 220 0.2439 0.4544 0.9089 0.9089 nan 0.9089 0.0 0.9089
0.1764 0.6 240 0.2318 0.4359 0.8719 0.8719 nan 0.8719 0.0 0.8719
0.1432 0.65 260 0.2253 0.4318 0.8636 0.8636 nan 0.8636 0.0 0.8636
0.1472 0.7 280 0.2193 0.4353 0.8707 0.8707 nan 0.8707 0.0 0.8707
0.4737 0.75 300 0.2347 0.4407 0.8813 0.8813 nan 0.8813 0.0 0.8813
0.1567 0.8 320 0.2212 0.4248 0.8496 0.8496 nan 0.8496 0.0 0.8496
0.0832 0.85 340 0.2170 0.4426 0.8852 0.8852 nan 0.8852 0.0 0.8852
0.1718 0.9 360 0.2079 0.4390 0.8780 0.8780 nan 0.8780 0.0 0.8780
0.3256 0.95 380 0.2127 0.4576 0.9151 0.9151 nan 0.9151 0.0 0.9151
0.089 1.0 400 0.2249 0.4603 0.9207 0.9207 nan 0.9207 0.0 0.9207
0.103 1.05 420 0.2051 0.4360 0.8720 0.8720 nan 0.8720 0.0 0.8720
0.3474 1.1 440 0.2216 0.4333 0.8666 0.8666 nan 0.8666 0.0 0.8666
0.0851 1.15 460 0.2306 0.4681 0.9361 0.9361 nan 0.9361 0.0 0.9361
0.1989 1.2 480 0.2029 0.4516 0.9032 0.9032 nan 0.9032 0.0 0.9032
0.2072 1.25 500 0.2076 0.4666 0.9331 0.9331 nan 0.9331 0.0 0.9331
0.2898 1.3 520 0.2164 0.4645 0.9291 0.9291 nan 0.9291 0.0 0.9291
0.1578 1.35 540 0.2057 0.4457 0.8914 0.8914 nan 0.8914 0.0 0.8914
0.2697 1.4 560 0.1973 0.4646 0.9292 0.9292 nan 0.9292 0.0 0.9292
0.1269 1.45 580 0.1830 0.4467 0.8934 0.8934 nan 0.8934 0.0 0.8934
0.0908 1.5 600 0.1866 0.4471 0.8941 0.8941 nan 0.8941 0.0 0.8941
0.0614 1.55 620 0.1983 0.4632 0.9264 0.9264 nan 0.9264 0.0 0.9264
0.1043 1.6 640 0.1941 0.4598 0.9196 0.9196 nan 0.9196 0.0 0.9196
0.0532 1.65 660 0.1920 0.4553 0.9106 0.9106 nan 0.9106 0.0 0.9106
0.5912 1.7 680 0.1880 0.4530 0.9059 0.9059 nan 0.9059 0.0 0.9059
0.0604 1.75 700 0.1964 0.4611 0.9221 0.9221 nan 0.9221 0.0 0.9221
0.0899 1.8 720 0.1975 0.4623 0.9245 0.9245 nan 0.9245 0.0 0.9245
0.1153 1.85 740 0.1866 0.4580 0.9160 0.9160 nan 0.9160 0.0 0.9160
0.1038 1.9 760 0.1998 0.4652 0.9304 0.9304 nan 0.9304 0.0 0.9304
0.1448 1.95 780 0.1977 0.4624 0.9248 0.9248 nan 0.9248 0.0 0.9248
0.1298 2.0 800 0.1893 0.4552 0.9104 0.9104 nan 0.9104 0.0 0.9104

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1