Summary_L3_1000steps_1e7rate_SFT2

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5908

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-07
  • train_batch_size: 2
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss
2.1137 0.2 50 2.1001
2.0888 0.4 100 2.0502
1.9941 0.6 150 1.9720
1.9206 0.8 200 1.9029
1.8477 1.0 250 1.8416
1.7846 1.2 300 1.7881
1.7997 1.4 350 1.7414
1.6961 1.6 400 1.7028
1.6667 1.8 450 1.6706
1.6768 2.0 500 1.6449
1.6485 2.2 550 1.6250
1.6208 2.4 600 1.6107
1.6199 2.6 650 1.6006
1.6081 2.8 700 1.5947
1.5993 3.0 750 1.5916
1.5986 3.2 800 1.5910
1.5963 3.4 850 1.5907
1.6348 3.6 900 1.5907
1.6064 3.8 950 1.5908
1.5811 4.0 1000 1.5908

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.0.0+cu117
  • Datasets 2.19.2
  • Tokenizers 0.19.1
Downloads last month
210
Safetensors
Model size
8.03B params
Tensor type
F16
Β·
Inference Providers NEW
Input a message to start chatting with tsavage68/Summary_L3_1000steps_1e7rate_SFT2.

Model tree for tsavage68/Summary_L3_1000steps_1e7rate_SFT2

Finetuned
(704)
this model
Finetunes
17 models
Quantizations
1 model

Spaces using tsavage68/Summary_L3_1000steps_1e7rate_SFT2 7