UTI2_M2_1000steps_1e6rate_05beta_CSFTDPO
This model is a fine-tuned version of tsavage68/UTI_M2_1000steps_1e7rate_SFT on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.5476
- Rewards/chosen: 0.9941
- Rewards/rejected: -7.4997
- Rewards/accuracies: 0.2100
- Rewards/margins: 8.4937
- Logps/rejected: -24.3733
- Logps/chosen: -2.5543
- Logits/rejected: -2.7955
- Logits/chosen: -2.7946
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 1000
Training results
Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
---|---|---|---|---|---|---|---|---|---|---|---|
0.5541 | 0.3333 | 25 | 0.5519 | 0.0709 | -2.5498 | 0.2100 | 2.6207 | -14.4735 | -4.4006 | -2.6521 | -2.6515 |
0.5545 | 0.6667 | 50 | 0.8852 | -0.2566 | -3.1766 | 0.1800 | 2.9200 | -15.7271 | -5.0556 | -2.6377 | -2.6371 |
0.5718 | 1.0 | 75 | 0.7287 | -0.0078 | -6.5265 | 0.2000 | 6.5188 | -22.4270 | -4.5580 | -2.5987 | -2.5978 |
2.2289 | 1.3333 | 100 | 0.5476 | 0.0080 | -5.0654 | 0.2100 | 5.0734 | -19.5048 | -4.5265 | -2.6769 | -2.6758 |
0.5545 | 1.6667 | 125 | 0.5476 | -0.0935 | -5.6463 | 0.2100 | 5.5528 | -20.6666 | -4.7295 | -2.6679 | -2.6668 |
0.5545 | 2.0 | 150 | 0.5476 | 0.9941 | -7.4997 | 0.2100 | 8.4937 | -24.3733 | -2.5543 | -2.7955 | -2.7946 |
0.5545 | 2.3333 | 175 | 0.5476 | 0.9941 | -7.4997 | 0.2100 | 8.4937 | -24.3733 | -2.5543 | -2.7955 | -2.7946 |
0.4852 | 2.6667 | 200 | 0.5476 | 0.9941 | -7.4997 | 0.2100 | 8.4937 | -24.3733 | -2.5543 | -2.7955 | -2.7946 |
0.6412 | 3.0 | 225 | 0.5476 | 0.9941 | -7.4997 | 0.2100 | 8.4937 | -24.3733 | -2.5543 | -2.7955 | -2.7946 |
0.5545 | 3.3333 | 250 | 0.5476 | 0.9941 | -7.4997 | 0.2100 | 8.4937 | -24.3733 | -2.5543 | -2.7955 | -2.7946 |
0.5372 | 3.6667 | 275 | 0.5476 | 0.9941 | -7.4997 | 0.2100 | 8.4937 | -24.3733 | -2.5543 | -2.7955 | -2.7946 |
0.5892 | 4.0 | 300 | 0.5476 | 0.9941 | -7.4997 | 0.2100 | 8.4937 | -24.3733 | -2.5543 | -2.7955 | -2.7946 |
0.4679 | 4.3333 | 325 | 0.5476 | 0.9941 | -7.4997 | 0.2100 | 8.4937 | -24.3733 | -2.5543 | -2.7955 | -2.7946 |
0.5718 | 4.6667 | 350 | 0.5476 | 0.9941 | -7.4997 | 0.2100 | 8.4937 | -24.3733 | -2.5543 | -2.7955 | -2.7946 |
0.5199 | 5.0 | 375 | 0.5476 | 0.9941 | -7.4997 | 0.2100 | 8.4937 | -24.3733 | -2.5543 | -2.7955 | -2.7946 |
0.5025 | 5.3333 | 400 | 0.5476 | 0.9941 | -7.4997 | 0.2100 | 8.4937 | -24.3733 | -2.5543 | -2.7955 | -2.7946 |
0.5199 | 5.6667 | 425 | 0.5476 | 0.9941 | -7.4997 | 0.2100 | 8.4937 | -24.3733 | -2.5543 | -2.7955 | -2.7946 |
0.5025 | 6.0 | 450 | 0.5476 | 0.9941 | -7.4997 | 0.2100 | 8.4937 | -24.3733 | -2.5543 | -2.7955 | -2.7946 |
0.5718 | 6.3333 | 475 | 0.5476 | 0.9941 | -7.4997 | 0.2100 | 8.4937 | -24.3733 | -2.5543 | -2.7955 | -2.7946 |
0.5718 | 6.6667 | 500 | 0.5476 | 0.9941 | -7.4997 | 0.2100 | 8.4937 | -24.3733 | -2.5543 | -2.7955 | -2.7946 |
0.5025 | 7.0 | 525 | 0.5476 | 0.9941 | -7.4997 | 0.2100 | 8.4937 | -24.3733 | -2.5543 | -2.7955 | -2.7946 |
0.5199 | 7.3333 | 550 | 0.5476 | 0.9941 | -7.4997 | 0.2100 | 8.4937 | -24.3733 | -2.5543 | -2.7955 | -2.7946 |
0.5372 | 7.6667 | 575 | 0.5476 | 0.9941 | -7.4997 | 0.2100 | 8.4937 | -24.3733 | -2.5543 | -2.7955 | -2.7946 |
0.5718 | 8.0 | 600 | 0.5476 | 0.9941 | -7.4997 | 0.2100 | 8.4937 | -24.3733 | -2.5543 | -2.7955 | -2.7946 |
0.5372 | 8.3333 | 625 | 0.5476 | 0.9941 | -7.4997 | 0.2100 | 8.4937 | -24.3733 | -2.5543 | -2.7955 | -2.7946 |
0.4332 | 8.6667 | 650 | 0.5476 | 0.9941 | -7.4997 | 0.2100 | 8.4937 | -24.3733 | -2.5543 | -2.7955 | -2.7946 |
0.5372 | 9.0 | 675 | 0.5476 | 0.9941 | -7.4997 | 0.2100 | 8.4937 | -24.3733 | -2.5543 | -2.7955 | -2.7946 |
0.5025 | 9.3333 | 700 | 0.5476 | 0.9941 | -7.4997 | 0.2100 | 8.4937 | -24.3733 | -2.5543 | -2.7955 | -2.7946 |
0.5025 | 9.6667 | 725 | 0.5476 | 0.9941 | -7.4997 | 0.2100 | 8.4937 | -24.3733 | -2.5543 | -2.7955 | -2.7946 |
0.5892 | 10.0 | 750 | 0.5476 | 0.9941 | -7.4997 | 0.2100 | 8.4937 | -24.3733 | -2.5543 | -2.7955 | -2.7946 |
0.5199 | 10.3333 | 775 | 0.5476 | 0.9941 | -7.4997 | 0.2100 | 8.4937 | -24.3733 | -2.5543 | -2.7955 | -2.7946 |
0.5199 | 10.6667 | 800 | 0.5476 | 0.9941 | -7.4997 | 0.2100 | 8.4937 | -24.3733 | -2.5543 | -2.7955 | -2.7946 |
0.5372 | 11.0 | 825 | 0.5476 | 0.9941 | -7.4997 | 0.2100 | 8.4937 | -24.3733 | -2.5543 | -2.7955 | -2.7946 |
0.5199 | 11.3333 | 850 | 0.5476 | 0.9941 | -7.4997 | 0.2100 | 8.4937 | -24.3733 | -2.5543 | -2.7955 | -2.7946 |
0.6065 | 11.6667 | 875 | 0.5476 | 0.9941 | -7.4997 | 0.2100 | 8.4937 | -24.3733 | -2.5543 | -2.7955 | -2.7946 |
0.5718 | 12.0 | 900 | 0.5476 | 0.9941 | -7.4997 | 0.2100 | 8.4937 | -24.3733 | -2.5543 | -2.7955 | -2.7946 |
0.4159 | 12.3333 | 925 | 0.5476 | 0.9941 | -7.4997 | 0.2100 | 8.4937 | -24.3733 | -2.5543 | -2.7955 | -2.7946 |
0.6238 | 12.6667 | 950 | 0.5476 | 0.9941 | -7.4997 | 0.2100 | 8.4937 | -24.3733 | -2.5543 | -2.7955 | -2.7946 |
0.6065 | 13.0 | 975 | 0.5476 | 0.9941 | -7.4997 | 0.2100 | 8.4937 | -24.3733 | -2.5543 | -2.7955 | -2.7946 |
0.5025 | 13.3333 | 1000 | 0.5476 | 0.9941 | -7.4997 | 0.2100 | 8.4937 | -24.3733 | -2.5543 | -2.7955 | -2.7946 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.0.0+cu117
- Datasets 2.19.2
- Tokenizers 0.19.1
- Downloads last month
- 4
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for tsavage68/UTI2_M2_1000steps_1e6rate_05beta_CSFTDPO
Base model
mistralai/Mistral-7B-Instruct-v0.2
Finetuned
tsavage68/UTI_M2_1000steps_1e7rate_SFT