mpt_1000_STEPS_1e5_rate_05_beta_DPO

This model is a fine-tuned version of mosaicml/mpt-7b-instruct on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.1807
  • Rewards/chosen: -19.4532
  • Rewards/rejected: -19.2274
  • Rewards/accuracies: 0.5033
  • Rewards/margins: -0.2258
  • Logps/rejected: -60.0122
  • Logps/chosen: -59.6986
  • Logits/rejected: 7.5623
  • Logits/chosen: 7.5620

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
1.5203 0.05 50 1.5171 -1.5689 -1.4986 0.4791 -0.0703 -24.5546 -23.9299 14.9602 14.9630
4.4339 0.1 100 2.9117 -11.0118 -10.8837 0.4813 -0.1281 -43.3247 -42.8158 22.8545 22.8566
5.6756 0.15 150 4.3519 -20.9772 -20.5347 0.4703 -0.4424 -62.6269 -62.7465 13.8454 13.8456
3.4587 0.2 200 3.7953 -20.5135 -19.9733 0.4549 -0.5402 -61.5040 -61.8193 9.3162 9.3161
3.1326 0.24 250 4.2192 -16.2805 -16.0169 0.4857 -0.2636 -53.5912 -53.3533 17.4741 17.4741
4.3129 0.29 300 3.2442 -18.6648 -18.0875 0.4462 -0.5773 -57.7325 -58.1219 9.3299 9.3300
4.1056 0.34 350 3.0391 -19.9243 -19.4698 0.4659 -0.4545 -60.4970 -60.6408 13.8852 13.8856
3.4604 0.39 400 3.0915 -16.3912 -16.0366 0.5055 -0.3546 -53.6306 -53.5745 9.7129 9.7125
4.7084 0.44 450 2.7841 -18.9738 -18.6116 0.4835 -0.3622 -58.7806 -58.7398 9.9158 9.9143
4.1944 0.49 500 2.9877 -22.1479 -21.8535 0.4901 -0.2944 -65.2644 -65.0879 10.6479 10.6476
3.8283 0.54 550 2.4650 -19.8299 -19.7039 0.4989 -0.1260 -60.9653 -60.4520 5.6892 5.6889
3.2208 0.59 600 2.3549 -15.6227 -15.7624 0.5385 0.1397 -53.0822 -52.0377 11.5783 11.5782
2.1741 0.64 650 2.4777 -19.7204 -19.3976 0.4945 -0.3228 -60.3526 -60.2330 10.8601 10.8596
2.8376 0.68 700 2.4241 -18.3119 -18.1735 0.5055 -0.1384 -57.9045 -57.4161 8.0859 8.0854
2.4514 0.73 750 2.2743 -20.2330 -20.0266 0.5033 -0.2064 -61.6106 -61.2582 6.6227 6.6223
1.8899 0.78 800 2.2326 -19.6323 -19.3966 0.5121 -0.2358 -60.3506 -60.0568 7.6793 7.6789
2.435 0.83 850 2.1976 -19.5253 -19.2881 0.5121 -0.2372 -60.1336 -59.8427 7.3698 7.3695
2.7112 0.88 900 2.1806 -19.4443 -19.2182 0.5011 -0.2261 -59.9939 -59.6808 7.5579 7.5575
2.6506 0.93 950 2.1819 -19.4556 -19.2275 0.5011 -0.2280 -60.0125 -59.7034 7.5627 7.5623
1.5392 0.98 1000 2.1807 -19.4532 -19.2274 0.5033 -0.2258 -60.0122 -59.6986 7.5623 7.5620

Framework versions

  • Transformers 4.39.1
  • Pytorch 2.0.0+cu117
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
6
Safetensors
Model size
6.65B params
Tensor type
FP16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for tsavage68/mpt_1000_STEPS_1e5_rate_05_beta_DPO

Finetuned
(19)
this model