w2v2_ablation_with_2-layer-ling_head-best_on_tp0.025_tl10_fp0.001_fl16
This model is a fine-tuned version of nguyenvulebinh/wav2vec2-base-vietnamese-250h on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.4189
- Wer: 0.0868
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 32
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
119.1979 | 0.94 | 100 | 90.9301 | 18.6457 |
62.9493 | 1.89 | 200 | 5.3623 | 1.0 |
5.2887 | 2.83 | 300 | 5.3655 | 1.0 |
4.883 | 3.77 | 400 | 4.9415 | 1.0 |
4.5796 | 4.72 | 500 | 4.7095 | 1.0 |
4.4349 | 5.66 | 600 | 4.6665 | 1.0 |
4.3659 | 6.6 | 700 | 4.5462 | 1.0 |
4.3131 | 7.55 | 800 | 4.5962 | 1.0013 |
4.0741 | 8.49 | 900 | 3.7100 | 0.9463 |
2.8536 | 9.43 | 1000 | 1.6469 | 0.3090 |
1.4787 | 10.38 | 1100 | 1.0660 | 0.2083 |
1.0696 | 11.32 | 1200 | 0.8183 | 0.1665 |
0.8856 | 12.26 | 1300 | 0.7093 | 0.1428 |
0.7634 | 13.21 | 1400 | 0.6900 | 0.1412 |
0.7078 | 14.15 | 1500 | 0.6310 | 0.1290 |
0.5978 | 15.09 | 1600 | 0.5944 | 0.1298 |
0.564 | 16.04 | 1700 | 0.5743 | 0.1280 |
0.5315 | 16.98 | 1800 | 0.5513 | 0.1333 |
0.4807 | 17.92 | 1900 | 0.5532 | 0.1235 |
0.4896 | 18.87 | 2000 | 0.5020 | 0.1162 |
0.4395 | 19.81 | 2100 | 0.5051 | 0.1245 |
0.442 | 20.75 | 2200 | 0.5076 | 0.1140 |
0.4188 | 21.7 | 2300 | 0.4916 | 0.1125 |
0.4093 | 22.64 | 2400 | 0.4767 | 0.1180 |
0.397 | 23.58 | 2500 | 0.4597 | 0.1130 |
0.3819 | 24.53 | 2600 | 0.4353 | 0.1089 |
0.3745 | 25.47 | 2700 | 0.4310 | 0.1051 |
0.3335 | 26.42 | 2800 | 0.4312 | 0.1063 |
0.3181 | 27.36 | 2900 | 0.4160 | 0.1035 |
0.3159 | 28.3 | 3000 | 0.4349 | 0.1011 |
0.298 | 29.25 | 3100 | 0.4192 | 0.1020 |
0.3045 | 30.19 | 3200 | 0.4211 | 0.1032 |
0.3078 | 31.13 | 3300 | 0.4092 | 0.0969 |
0.2604 | 32.08 | 3400 | 0.4174 | 0.1009 |
0.2763 | 33.02 | 3500 | 0.4244 | 0.1109 |
0.2806 | 33.96 | 3600 | 0.4249 | 0.0973 |
0.2565 | 34.91 | 3700 | 0.4237 | 0.0989 |
0.2512 | 35.85 | 3800 | 0.4301 | 0.1052 |
0.2398 | 36.79 | 3900 | 0.4332 | 0.0931 |
0.2668 | 37.74 | 4000 | 0.4147 | 0.0986 |
0.2639 | 38.68 | 4100 | 0.4245 | 0.1077 |
0.2389 | 39.62 | 4200 | 0.4217 | 0.0961 |
0.235 | 40.57 | 4300 | 0.4236 | 0.0928 |
0.2435 | 41.51 | 4400 | 0.4235 | 0.0911 |
0.255 | 42.45 | 4500 | 0.4168 | 0.0979 |
0.2146 | 43.4 | 4600 | 0.4214 | 0.0950 |
0.1948 | 44.34 | 4700 | 0.4224 | 0.0956 |
0.2085 | 45.28 | 4800 | 0.4232 | 0.1004 |
0.203 | 46.23 | 4900 | 0.4330 | 0.0968 |
0.1994 | 47.17 | 5000 | 0.4294 | 0.0895 |
0.1842 | 48.11 | 5100 | 0.4271 | 0.0979 |
0.1918 | 49.06 | 5200 | 0.4296 | 0.0953 |
0.178 | 50.0 | 5300 | 0.4331 | 0.0939 |
0.181 | 50.94 | 5400 | 0.4180 | 0.0919 |
0.1816 | 51.89 | 5500 | 0.4332 | 0.1003 |
0.1886 | 52.83 | 5600 | 0.4225 | 0.0975 |
0.1873 | 53.77 | 5700 | 0.4198 | 0.0944 |
0.1697 | 54.72 | 5800 | 0.4192 | 0.0920 |
0.1666 | 55.66 | 5900 | 0.4145 | 0.0930 |
0.1631 | 56.6 | 6000 | 0.4122 | 0.0949 |
0.1684 | 57.55 | 6100 | 0.4179 | 0.0873 |
0.1578 | 58.49 | 6200 | 0.4182 | 0.0891 |
0.1667 | 59.43 | 6300 | 0.4110 | 0.0886 |
0.1516 | 60.38 | 6400 | 0.4105 | 0.0843 |
0.1687 | 61.32 | 6500 | 0.4143 | 0.0853 |
0.1626 | 62.26 | 6600 | 0.4113 | 0.0832 |
0.163 | 63.21 | 6700 | 0.4145 | 0.0873 |
0.1597 | 64.15 | 6800 | 0.4183 | 0.0854 |
0.1548 | 65.09 | 6900 | 0.4163 | 0.0903 |
0.1572 | 66.04 | 7000 | 0.4197 | 0.0896 |
0.1479 | 66.98 | 7100 | 0.4150 | 0.0882 |
0.1484 | 67.92 | 7200 | 0.4187 | 0.0878 |
0.1684 | 68.87 | 7300 | 0.4206 | 0.0879 |
0.1491 | 69.81 | 7400 | 0.4150 | 0.0853 |
0.1331 | 70.75 | 7500 | 0.4199 | 0.0885 |
0.137 | 71.7 | 7600 | 0.4170 | 0.0899 |
0.1318 | 72.64 | 7700 | 0.4214 | 0.0866 |
0.1339 | 73.58 | 7800 | 0.4245 | 0.0878 |
0.1246 | 74.53 | 7900 | 0.4200 | 0.0883 |
0.1365 | 75.47 | 8000 | 0.4197 | 0.0915 |
0.1414 | 76.42 | 8100 | 0.4147 | 0.0879 |
0.1397 | 77.36 | 8200 | 0.4192 | 0.0913 |
0.123 | 78.3 | 8300 | 0.4190 | 0.0898 |
0.1569 | 79.25 | 8400 | 0.4172 | 0.0908 |
0.1356 | 80.19 | 8500 | 0.4212 | 0.0868 |
0.1377 | 81.13 | 8600 | 0.4216 | 0.0879 |
0.1379 | 82.08 | 8700 | 0.4215 | 0.0880 |
0.1202 | 83.02 | 8800 | 0.4190 | 0.0873 |
0.1241 | 83.96 | 8900 | 0.4175 | 0.0857 |
0.1245 | 84.91 | 9000 | 0.4168 | 0.0870 |
0.1328 | 85.85 | 9100 | 0.4182 | 0.0893 |
0.1238 | 86.79 | 9200 | 0.4180 | 0.0874 |
0.1286 | 87.74 | 9300 | 0.4191 | 0.0852 |
0.1278 | 88.68 | 9400 | 0.4197 | 0.0853 |
0.1268 | 89.62 | 9500 | 0.4192 | 0.0868 |
0.1299 | 90.57 | 9600 | 0.4202 | 0.0861 |
0.1308 | 91.51 | 9700 | 0.4203 | 0.0871 |
0.1396 | 92.45 | 9800 | 0.4189 | 0.0873 |
0.126 | 93.4 | 9900 | 0.4191 | 0.0860 |
0.1182 | 94.34 | 10000 | 0.4199 | 0.0860 |
0.1353 | 95.28 | 10100 | 0.4193 | 0.0861 |
0.132 | 96.23 | 10200 | 0.4191 | 0.0863 |
0.1427 | 97.17 | 10300 | 0.4190 | 0.0868 |
0.135 | 98.11 | 10400 | 0.4189 | 0.0867 |
0.1156 | 99.06 | 10500 | 0.4190 | 0.0870 |
0.1361 | 100.0 | 10600 | 0.4189 | 0.0868 |
Framework versions
- Transformers 4.35.2
- Pytorch 1.13.1+cu117
- Datasets 2.12.0
- Tokenizers 0.14.1
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for tuanio/w2v2_ablation_with_2-layer-ling_head-best_on_tp0.025_tl10_fp0.001_fl16
Base model
nguyenvulebinh/wav2vec2-base-vietnamese-250h