File size: 1,261 Bytes
37af75f
 
 
 
 
 
 
 
 
 
 
f3d3769
 
 
 
 
 
 
 
 
 
 
37af75f
f3d3769
 
 
 
 
 
37af75f
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import torch
from typing import Dict, List, Any
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline

# get dtype
dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] == 8 else torch.float16


class EndpointHandler:
    def __init__(self, path=""):
        # load the model
        tokenizer = AutoTokenizer.from_pretrained(
            path, 
            trust_remote_code=True
        )
        model = AutoModelForCausalLM.from_pretrained(
            path, 
            device_map="auto", 
            torch_dtype=dtype, 
            trust_remote_code=True,
            revision="main"
        )
        # create inference pipeline
        self.pipeline = pipeline(
            "text-generation", 
            model=model, 
            tokenizer=tokenizer,
            trust_remote_code=True
        )

    def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
        inputs = data.pop("inputs", data)
        parameters = data.pop("parameters", None)

        # pass inputs with all kwargs in data
        if parameters is not None:
            prediction = self.pipeline(inputs, **parameters)
        else:
            prediction = self.pipeline(inputs)
        # postprocess the prediction
        return prediction