lmind_hotpot_train8000_eval7405_v1_reciteonly_qa_meta-llama_Llama-2-7b-hf_lora2
This model is a fine-tuned version of meta-llama/Llama-2-7b-hf on the tyzhu/lmind_hotpot_train8000_eval7405_v1_reciteonly_qa dataset. It achieves the following results on the evaluation set:
- Loss: 1.3933
- Accuracy: 0.7066
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 10.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.0226 | 1.0 | 250 | 1.0235 | 0.7177 |
0.9745 | 2.0 | 500 | 1.0165 | 0.7181 |
0.9235 | 3.0 | 750 | 1.0244 | 0.7175 |
0.8535 | 4.0 | 1000 | 1.0415 | 0.7171 |
0.7844 | 5.0 | 1250 | 1.0768 | 0.7153 |
0.7037 | 6.0 | 1500 | 1.1239 | 0.7133 |
0.6226 | 7.0 | 1750 | 1.1760 | 0.7118 |
0.5485 | 8.0 | 2000 | 1.2219 | 0.7102 |
0.4758 | 9.0 | 2250 | 1.3188 | 0.7079 |
0.4116 | 10.0 | 2500 | 1.3933 | 0.7066 |
Framework versions
- Transformers 4.34.0
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.14.1
Model tree for tyzhu/lmind_hotpot_train8000_eval7405_v1_reciteonly_qa_meta-llama_Llama-2-7b-hf_lora2
Base model
meta-llama/Llama-2-7b-hfDataset used to train tyzhu/lmind_hotpot_train8000_eval7405_v1_reciteonly_qa_meta-llama_Llama-2-7b-hf_lora2
Evaluation results
- Accuracy on tyzhu/lmind_hotpot_train8000_eval7405_v1_reciteonly_qaself-reported0.707