lmind_nq_train6000_eval6489_v1_doc_qa_v3_1e-4_lora2
This model is a fine-tuned version of meta-llama/Llama-2-7b-hf on the tyzhu/lmind_nq_train6000_eval6489_v1_doc_qa_v3 dataset. It achieves the following results on the evaluation set:
- Loss: 1.9525
- Accuracy: 0.5902
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 50.0
Training results
Training Loss | Epoch | Step | Accuracy | Validation Loss |
---|---|---|---|---|
1.3835 | 1.0 | 529 | 0.6151 | 1.2937 |
1.3363 | 2.0 | 1058 | 0.6172 | 1.2863 |
1.226 | 3.0 | 1587 | 0.6164 | 1.3074 |
1.122 | 4.0 | 2116 | 0.5989 | 1.3926 |
1.0259 | 5.0 | 2645 | 0.6117 | 1.4826 |
0.8978 | 6.0 | 3174 | 0.6105 | 1.5410 |
0.8122 | 7.0 | 3703 | 0.6067 | 1.6852 |
0.7029 | 8.0 | 4232 | 0.6074 | 1.6874 |
0.6218 | 9.0 | 4761 | 0.6057 | 1.7531 |
0.5283 | 10.0 | 5290 | 0.6071 | 1.7846 |
0.4912 | 11.0 | 5819 | 0.6066 | 1.7853 |
0.404 | 12.0 | 6348 | 0.6057 | 1.8682 |
0.3401 | 13.0 | 6877 | 0.6056 | 1.9170 |
0.2908 | 14.0 | 7406 | 0.6049 | 1.9692 |
0.2613 | 15.0 | 7935 | 0.6056 | 2.0265 |
0.3068 | 16.0 | 8464 | 0.6051 | 2.0003 |
0.2314 | 17.0 | 8993 | 0.5904 | 2.0362 |
0.219 | 18.0 | 9522 | 0.6053 | 2.0412 |
0.2194 | 19.0 | 10051 | 0.6034 | 2.0586 |
0.2198 | 20.0 | 10580 | 0.6036 | 2.0877 |
0.3243 | 21.0 | 11109 | 0.6022 | 2.0553 |
0.4775 | 22.0 | 11638 | 0.6014 | 1.9758 |
0.2684 | 23.0 | 12167 | 0.6036 | 2.0437 |
2.0747 | 24.0 | 12696 | 0.1914 | 7.5035 |
0.9811 | 25.0 | 13225 | 0.5881 | 1.7852 |
0.5439 | 26.0 | 13754 | 0.5954 | 1.8359 |
0.5659 | 27.0 | 14283 | 0.5845 | 1.9092 |
0.3486 | 28.0 | 14812 | 0.6024 | 1.8739 |
0.2834 | 29.0 | 15341 | 0.6021 | 1.9266 |
0.2764 | 30.0 | 15870 | 0.6001 | 1.9530 |
0.2739 | 31.0 | 16399 | 0.6037 | 1.8998 |
0.2819 | 32.0 | 16928 | 0.6019 | 1.9407 |
0.26 | 33.0 | 17457 | 0.6029 | 1.9166 |
0.2837 | 34.0 | 17986 | 0.6031 | 1.8685 |
0.2572 | 35.0 | 18515 | 0.6024 | 1.9152 |
0.2277 | 36.0 | 19044 | 0.6013 | 1.9697 |
0.2148 | 37.0 | 19573 | 0.576 | 1.9482 |
0.205 | 38.0 | 20102 | 0.6023 | 1.9606 |
0.2421 | 39.0 | 20631 | 0.6011 | 1.9484 |
0.2082 | 40.0 | 21160 | 0.6029 | 1.9348 |
0.2364 | 41.0 | 21689 | 0.6028 | 1.9490 |
0.331 | 42.0 | 22218 | 0.5911 | 1.9153 |
0.2749 | 43.0 | 22747 | 0.5990 | 1.8960 |
0.251 | 44.0 | 23276 | 0.5985 | 1.8958 |
0.3465 | 45.0 | 23805 | 0.5968 | 1.8921 |
0.2817 | 46.0 | 24334 | 0.5998 | 1.9187 |
0.3276 | 47.0 | 24863 | 0.5945 | 1.9200 |
0.4979 | 48.0 | 25392 | 0.5899 | 1.8942 |
0.4234 | 49.0 | 25921 | 0.5918 | 1.9040 |
0.4576 | 50.0 | 26450 | 0.5902 | 1.9525 |
Framework versions
- Transformers 4.34.0
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.14.1
Model tree for tyzhu/lmind_nq_train6000_eval6489_v1_doc_qa_v3_1e-4_lora2
Base model
meta-llama/Llama-2-7b-hfDataset used to train tyzhu/lmind_nq_train6000_eval6489_v1_doc_qa_v3_1e-4_lora2
Evaluation results
- Accuracy on tyzhu/lmind_nq_train6000_eval6489_v1_doc_qa_v3self-reported0.590