lmind_nq_train6000_eval6489_v1_doc_qa_v3_Qwen_Qwen1.5-4B_3e-5_lora2

This model is a fine-tuned version of Qwen/Qwen1.5-4B on the tyzhu/lmind_nq_train6000_eval6489_v1_doc_qa_v3 dataset. It achieves the following results on the evaluation set:

  • Loss: 2.4758
  • Accuracy: 0.5594

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 1
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 20.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.8498 1.0 529 1.6299 0.5722
1.821 2.0 1058 1.6039 0.5750
1.7317 3.0 1587 1.6205 0.5749
1.6831 4.0 2116 1.6653 0.5729
1.5981 5.0 2645 1.7394 0.5695
1.5258 6.0 3174 1.8378 0.5663
1.4781 7.0 3703 1.8968 0.5656
1.4482 8.0 4232 2.0232 0.5636
1.4036 9.0 4761 2.0670 0.5609
1.3778 10.0 5290 2.1624 0.562
1.3242 11.0 5819 2.2012 0.5615
1.3135 12.0 6348 2.2194 0.5634
1.2761 13.0 6877 2.3155 0.5607
1.266 14.0 7406 2.3657 0.5605
1.1995 15.0 7935 2.3795 0.5593
1.1944 16.0 8464 2.4200 0.5590
1.1433 17.0 8993 2.4230 0.5598
1.1323 18.0 9522 2.4370 0.5591
1.1049 19.0 10051 2.4679 0.5601
1.056 20.0 10580 2.4758 0.5594

Framework versions

  • PEFT 0.5.0
  • Transformers 4.40.2
  • Pytorch 2.3.0
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
4
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for tyzhu/lmind_nq_train6000_eval6489_v1_doc_qa_v3_Qwen_Qwen1.5-4B_3e-5_lora2

Base model

Qwen/Qwen1.5-4B
Adapter
(272)
this model

Dataset used to train tyzhu/lmind_nq_train6000_eval6489_v1_doc_qa_v3_Qwen_Qwen1.5-4B_3e-5_lora2

Evaluation results

  • Accuracy on tyzhu/lmind_nq_train6000_eval6489_v1_doc_qa_v3
    self-reported
    0.559