lmind_nq_train6000_eval6489_v1_qa_3e-4_lora2
This model is a fine-tuned version of meta-llama/Llama-2-7b-hf on the tyzhu/lmind_nq_train6000_eval6489_v1_qa dataset. It achieves the following results on the evaluation set:
- Loss: 3.0231
- Accuracy: 0.4910
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 50.0
Training results
Training Loss | Epoch | Step | Accuracy | Validation Loss |
---|---|---|---|---|
1.4433 | 1.0 | 187 | 0.6166 | 1.2626 |
1.0761 | 2.0 | 375 | 0.6159 | 1.2960 |
0.7909 | 3.0 | 562 | 0.6094 | 1.4208 |
0.6117 | 4.0 | 750 | 0.6065 | 1.5099 |
0.535 | 5.0 | 937 | 0.6073 | 1.6384 |
0.4917 | 6.0 | 1125 | 0.6064 | 1.6918 |
0.4746 | 7.0 | 1312 | 0.6048 | 1.7547 |
0.463 | 8.0 | 1500 | 0.6057 | 1.7708 |
0.4307 | 9.0 | 1687 | 0.6051 | 1.7773 |
0.4323 | 10.0 | 1875 | 0.5997 | 1.7927 |
0.4301 | 11.0 | 2062 | 0.6046 | 1.8201 |
0.4331 | 12.0 | 2250 | 0.6051 | 1.8903 |
0.4338 | 13.0 | 2437 | 0.6035 | 1.8489 |
0.4331 | 14.0 | 2625 | 0.6024 | 1.9058 |
0.4362 | 15.0 | 2812 | 0.6004 | 1.8960 |
0.4371 | 16.0 | 3000 | 0.6012 | 1.9080 |
0.4153 | 17.0 | 3187 | 0.6019 | 1.9090 |
0.4151 | 18.0 | 3375 | 0.6004 | 1.9131 |
0.426 | 19.0 | 3562 | 0.5750 | 2.0016 |
0.4475 | 20.0 | 3750 | 0.6010 | 1.8873 |
0.4325 | 21.0 | 3937 | 0.6009 | 1.8351 |
0.4542 | 22.0 | 4125 | 0.5990 | 1.8659 |
0.5662 | 23.0 | 4312 | 0.5964 | 1.8427 |
0.4365 | 24.0 | 4500 | 0.5993 | 1.8093 |
0.4153 | 25.0 | 4687 | 0.6022 | 1.8418 |
0.4099 | 26.0 | 4875 | 0.6002 | 1.9742 |
0.4101 | 27.0 | 5062 | 0.5987 | 1.9682 |
0.4122 | 28.0 | 5250 | 0.5991 | 1.9906 |
0.4116 | 29.0 | 5437 | 0.5990 | 1.9428 |
0.4158 | 30.0 | 5625 | 0.5987 | 1.9262 |
0.4215 | 31.0 | 5812 | 0.5961 | 1.9735 |
0.4249 | 32.0 | 6000 | 0.5966 | 1.9393 |
0.4049 | 33.0 | 6187 | 0.5956 | 2.0083 |
0.4077 | 34.0 | 6375 | 0.5962 | 1.9472 |
0.4078 | 35.0 | 6562 | 0.5945 | 1.9796 |
2.7734 | 36.0 | 6750 | 0.3345 | 5.2338 |
4.2638 | 37.0 | 6937 | 0.4333 | 3.7370 |
2.5456 | 38.0 | 7125 | 0.3550 | 4.5389 |
5.3244 | 39.0 | 7312 | 0.4132 | 4.0601 |
3.9209 | 40.0 | 7500 | 0.4102 | 4.0942 |
3.4851 | 41.0 | 7687 | 0.5124 | 2.5265 |
1.3821 | 42.0 | 7875 | 0.5595 | 2.0728 |
0.7913 | 43.0 | 8062 | 0.5667 | 2.0104 |
0.6674 | 44.0 | 8250 | 0.5754 | 2.0220 |
0.6202 | 45.0 | 8437 | 0.5837 | 2.0235 |
0.4798 | 46.0 | 8625 | 0.5816 | 2.0670 |
0.4663 | 47.0 | 8812 | 0.5756 | 2.0748 |
4.502 | 48.0 | 9000 | 0.4479 | 3.4224 |
2.7893 | 49.0 | 9187 | 0.5287 | 2.3122 |
1.8211 | 49.87 | 9350 | 0.4910 | 3.0231 |
Framework versions
- Transformers 4.34.0
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.14.1
Model tree for tyzhu/lmind_nq_train6000_eval6489_v1_qa_3e-4_lora2
Base model
meta-llama/Llama-2-7b-hfDataset used to train tyzhu/lmind_nq_train6000_eval6489_v1_qa_3e-4_lora2
Evaluation results
- Accuracy on tyzhu/lmind_nq_train6000_eval6489_v1_qaself-reported0.491