lmind_nq_train6000_eval6489_v1_qa_5e-4_lora2
This model is a fine-tuned version of meta-llama/Llama-2-7b-hf on the tyzhu/lmind_nq_train6000_eval6489_v1_qa dataset. It achieves the following results on the evaluation set:
- Loss: 5.5751
- Accuracy: 0.3655
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 50.0
Training results
Training Loss | Epoch | Step | Accuracy | Validation Loss |
---|---|---|---|---|
1.43 | 1.0 | 187 | 0.6162 | 1.2683 |
1.0285 | 2.0 | 375 | 0.6129 | 1.3220 |
0.7318 | 3.0 | 562 | 0.6076 | 1.4645 |
0.5898 | 4.0 | 750 | 0.6050 | 1.5454 |
0.5309 | 5.0 | 937 | 0.6026 | 1.6439 |
0.4985 | 6.0 | 1125 | 0.6034 | 1.7220 |
0.5091 | 7.0 | 1312 | 0.6008 | 1.8008 |
0.4796 | 8.0 | 1500 | 0.6001 | 1.7782 |
0.4453 | 9.0 | 1687 | 0.5985 | 1.8255 |
0.448 | 10.0 | 1875 | 0.5931 | 1.7979 |
0.4522 | 11.0 | 2062 | 0.5959 | 1.8272 |
0.4552 | 12.0 | 2250 | 0.5946 | 1.8670 |
0.4551 | 13.0 | 2437 | 0.5950 | 1.8706 |
0.4559 | 14.0 | 2625 | 0.5925 | 1.8731 |
0.4581 | 15.0 | 2812 | 0.5932 | 1.8531 |
0.4535 | 16.0 | 3000 | 0.5923 | 1.9492 |
0.4308 | 17.0 | 3187 | 0.5915 | 1.8944 |
0.4312 | 18.0 | 3375 | 0.5904 | 1.9315 |
0.4372 | 19.0 | 3562 | 0.5899 | 1.9201 |
0.4359 | 20.0 | 3750 | 0.5895 | 1.9753 |
0.4363 | 21.0 | 3937 | 0.5877 | 1.9932 |
0.4404 | 22.0 | 4125 | 0.5866 | 2.0326 |
0.4436 | 23.0 | 4312 | 0.5848 | 2.0008 |
0.4438 | 24.0 | 4500 | 0.5877 | 2.0186 |
0.4233 | 25.0 | 4687 | 0.5863 | 2.0452 |
0.4237 | 26.0 | 4875 | 0.5843 | 2.0520 |
0.4289 | 27.0 | 5062 | 0.5828 | 2.0817 |
0.4325 | 28.0 | 5250 | 0.5833 | 2.0512 |
0.4329 | 29.0 | 5437 | 0.5828 | 2.0906 |
0.4314 | 30.0 | 5625 | 0.5824 | 2.0403 |
0.431 | 31.0 | 5812 | 0.5824 | 2.1194 |
0.4318 | 32.0 | 6000 | 0.5829 | 2.0985 |
0.414 | 33.0 | 6187 | 0.5805 | 2.1533 |
0.4214 | 34.0 | 6375 | 0.5779 | 2.1918 |
0.4264 | 35.0 | 6562 | 0.5774 | 2.1835 |
0.4361 | 36.0 | 6750 | 0.5771 | 2.1864 |
0.4369 | 37.0 | 6937 | 0.5761 | 2.1546 |
0.4362 | 38.0 | 7125 | 0.5752 | 2.1423 |
0.4322 | 39.0 | 7312 | 0.5778 | 2.1938 |
0.4359 | 40.0 | 7500 | 0.5752 | 2.2000 |
0.4153 | 41.0 | 7687 | 0.5751 | 2.2344 |
0.4195 | 42.0 | 7875 | 0.5747 | 2.2526 |
0.9164 | 43.0 | 8062 | 0.5717 | 2.1985 |
0.4295 | 44.0 | 8250 | 0.5718 | 2.2145 |
0.4298 | 45.0 | 8437 | 0.5714 | 2.2211 |
0.4446 | 46.0 | 8625 | 0.5703 | 2.2656 |
2.0935 | 47.0 | 8812 | 0.5081 | 2.6962 |
3.096 | 48.0 | 9000 | 0.4494 | 3.2961 |
2.9615 | 49.0 | 9187 | 0.4241 | 4.3483 |
4.5736 | 49.87 | 9350 | 0.3655 | 5.5751 |
Framework versions
- Transformers 4.34.0
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.14.1
Model tree for tyzhu/lmind_nq_train6000_eval6489_v1_qa_5e-4_lora2
Base model
meta-llama/Llama-2-7b-hfDataset used to train tyzhu/lmind_nq_train6000_eval6489_v1_qa_5e-4_lora2
Evaluation results
- Accuracy on tyzhu/lmind_nq_train6000_eval6489_v1_qaself-reported0.365