lmind_nq_train6000_eval6489_v1_qa_Qwen_Qwen1.5-4B_5e-4_lora2
This model is a fine-tuned version of Qwen/Qwen1.5-4B on the tyzhu/lmind_nq_train6000_eval6489_v1_qa dataset. It achieves the following results on the evaluation set:
- Loss: 2.4467
- Accuracy: 0.5472
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 1
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 20.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.7152 | 0.9973 | 187 | 1.6235 | 0.5736 |
1.2597 | 2.0 | 375 | 1.6922 | 0.5689 |
0.9105 | 2.9973 | 562 | 1.8390 | 0.5645 |
0.7214 | 4.0 | 750 | 1.9820 | 0.5616 |
0.6428 | 4.9973 | 937 | 2.0143 | 0.56 |
0.5948 | 6.0 | 1125 | 2.1345 | 0.5575 |
0.5692 | 6.9973 | 1312 | 2.1957 | 0.5575 |
0.5569 | 8.0 | 1500 | 2.2088 | 0.5549 |
0.5176 | 8.9973 | 1687 | 2.2513 | 0.5565 |
0.5272 | 10.0 | 1875 | 2.2161 | 0.5550 |
0.5305 | 10.9973 | 2062 | 2.2532 | 0.5537 |
0.5463 | 12.0 | 2250 | 2.2262 | 0.5543 |
0.5471 | 12.9973 | 2437 | 2.2971 | 0.5516 |
0.5436 | 14.0 | 2625 | 2.2834 | 0.5515 |
0.5417 | 14.9973 | 2812 | 2.3678 | 0.5468 |
0.5409 | 16.0 | 3000 | 2.3382 | 0.5494 |
0.4996 | 16.9973 | 3187 | 2.4009 | 0.5493 |
0.4995 | 18.0 | 3375 | 2.4317 | 0.5487 |
0.5015 | 18.9973 | 3562 | 2.4855 | 0.5474 |
0.4986 | 19.9467 | 3740 | 2.4467 | 0.5472 |
Framework versions
- PEFT 0.5.0
- Transformers 4.40.2
- Pytorch 2.3.0
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 0
Model tree for tyzhu/lmind_nq_train6000_eval6489_v1_qa_Qwen_Qwen1.5-4B_5e-4_lora2
Base model
Qwen/Qwen1.5-4BDataset used to train tyzhu/lmind_nq_train6000_eval6489_v1_qa_Qwen_Qwen1.5-4B_5e-4_lora2
Evaluation results
- Accuracy on tyzhu/lmind_nq_train6000_eval6489_v1_qaself-reported0.547