lmind_nq_train6000_eval6489_v1_qa_Qwen_Qwen1.5-4B_5e-4_lora2

This model is a fine-tuned version of Qwen/Qwen1.5-4B on the tyzhu/lmind_nq_train6000_eval6489_v1_qa dataset. It achieves the following results on the evaluation set:

  • Loss: 2.4467
  • Accuracy: 0.5472

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 1
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 20.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.7152 0.9973 187 1.6235 0.5736
1.2597 2.0 375 1.6922 0.5689
0.9105 2.9973 562 1.8390 0.5645
0.7214 4.0 750 1.9820 0.5616
0.6428 4.9973 937 2.0143 0.56
0.5948 6.0 1125 2.1345 0.5575
0.5692 6.9973 1312 2.1957 0.5575
0.5569 8.0 1500 2.2088 0.5549
0.5176 8.9973 1687 2.2513 0.5565
0.5272 10.0 1875 2.2161 0.5550
0.5305 10.9973 2062 2.2532 0.5537
0.5463 12.0 2250 2.2262 0.5543
0.5471 12.9973 2437 2.2971 0.5516
0.5436 14.0 2625 2.2834 0.5515
0.5417 14.9973 2812 2.3678 0.5468
0.5409 16.0 3000 2.3382 0.5494
0.4996 16.9973 3187 2.4009 0.5493
0.4995 18.0 3375 2.4317 0.5487
0.5015 18.9973 3562 2.4855 0.5474
0.4986 19.9467 3740 2.4467 0.5472

Framework versions

  • PEFT 0.5.0
  • Transformers 4.40.2
  • Pytorch 2.3.0
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for tyzhu/lmind_nq_train6000_eval6489_v1_qa_Qwen_Qwen1.5-4B_5e-4_lora2

Base model

Qwen/Qwen1.5-4B
Adapter
(272)
this model

Dataset used to train tyzhu/lmind_nq_train6000_eval6489_v1_qa_Qwen_Qwen1.5-4B_5e-4_lora2

Evaluation results

  • Accuracy on tyzhu/lmind_nq_train6000_eval6489_v1_qa
    self-reported
    0.547