tyzhu's picture
End of training
347967c verified
|
raw
history blame
2.55 kB
metadata
license: other
base_model: Qwen/Qwen1.5-4B
tags:
  - generated_from_trainer
datasets:
  - tyzhu/lmind_nq_train6000_eval6489_v1_qa
metrics:
  - accuracy
model-index:
  - name: lmind_nq_train6000_eval6489_v1_qa_Qwen_Qwen1.5-4B_lora2
    results:
      - task:
          name: Causal Language Modeling
          type: text-generation
        dataset:
          name: tyzhu/lmind_nq_train6000_eval6489_v1_qa
          type: tyzhu/lmind_nq_train6000_eval6489_v1_qa
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.5594358974358974
library_name: peft

lmind_nq_train6000_eval6489_v1_qa_Qwen_Qwen1.5-4B_lora2

This model is a fine-tuned version of Qwen/Qwen1.5-4B on the tyzhu/lmind_nq_train6000_eval6489_v1_qa dataset. It achieves the following results on the evaluation set:

  • Loss: 2.2527
  • Accuracy: 0.5594

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 1
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 10.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.7657 0.9973 187 1.6215 0.5738
1.497 2.0 375 1.6180 0.5742
1.2345 2.9973 562 1.6951 0.5713
1.0084 4.0 750 1.8059 0.5659
0.8397 4.9973 937 1.9245 0.5647
0.7186 6.0 1125 2.0345 0.5614
0.6421 6.9973 1312 2.1148 0.5608
0.5968 8.0 1500 2.1779 0.5585
0.5417 8.9973 1687 2.2654 0.5568
0.5356 9.9733 1870 2.2527 0.5594

Framework versions

  • PEFT 0.5.0
  • Transformers 4.40.2
  • Pytorch 2.3.0
  • Datasets 2.19.1
  • Tokenizers 0.19.1